IA ayuda a optimizar la dosis de radiación de rayos X en tomografía computarizada
Por el equipo editorial de MedImaging en español Actualizado el 16 Mar 2023 |

La tomografía computarizada (TC) es una herramienta de diagnóstico muy eficaz y extensa utilizada por la medicina moderna. Desafortunadamente, existe una preocupación creciente con respecto a la cantidad cada vez mayor de pacientes que se someten a tomografías computarizadas y la cantidad considerable de radiación de rayos X a la que están expuestos. El principio ALARA, comúnmente conocido como "tan bajo como sea razonablemente posible", implica que un paciente debe recibir el beneficio de diagnóstico más significativo con una exposición mínima a la radiación. En términos prácticos, este principio requiere una solución intermedia, ya que la disminución del nivel de radiación administrada generalmente da como resultado una calidad de imagen de TC más pobre. En consecuencia, los profesionales médicos deben lograr un equilibrio entre obtener alta calidad de imágenes de TC y minimizar la exposición del paciente a los rayos X para reducir el riesgo de un diagnóstico erróneo.
Para lograr un equilibrio entre la calidad de la imagen y la exposición a la radiación durante las TC, los profesionales de la salud, incluidos los radiólogos, pueden emplear una estrategia de optimización. Primero, observan imágenes reales generadas por el tomógrafo para identificar anomalías como tumores o tejido inusual. Luego se utilizan métodos estadísticos para calcular la dosis de radiación óptima y la configuración del tomógrafo. Este procedimiento se puede generalizar mediante la adopción de imágenes de TC de referencia obtenidas al escanear fantasmas especialmente diseñados que contienen insertos de diferentes tamaños y contrastes, que representan anomalías estandarizadas. Sin embargo, el análisis manual de imágenes requiere mucho tiempo. Para abordar este problema, un equipo de investigadores de la Universidad de Florencia (Florencia, Italia), en colaboración con radiólogos y físicos médicos, examinó si este proceso podría automatizarse mediante el uso de inteligencia artificial (IA). El equipo creó y entrenó un algoritmo, un "observador modelo", basado en redes neuronales convolucionales (CNN), que podría analizar las anomalías estandarizadas en las imágenes de TC con la misma eficiencia que un profesional.
El equipo necesitaba suficientes datos de entrenamiento y de prueba para su modelo, para lo cual 30 profesionales de la salud examinaron visualmente 1.000 imágenes de TC en un fantasma que imitaba el tejido humano. El fantasma contenía insertos cilíndricos de diferentes diámetros y contrastes, y los observadores tenían que identificar si un objeto estaba presente en la imagen e indicar el nivel de confianza en su evaluación. Esto generó un conjunto de datos de 30.000 imágenes de TC etiquetadas capturadas mediante varias configuraciones de reconstrucción tomográfica, que reflejan con precisión la interpretación humana. Luego, el equipo implementó dos modelos de IA basados en diferentes arquitecturas, UNet y MobileNetV2, y modificó el diseño base de estas arquitecturas para permitirles realizar tanto la clasificación ("¿Hay un objeto inusual en la imagen de TC?") como la localización ("¿Dónde está el objeto inusual?"). Luego, los modelos se entrenaron y probaron utilizando imágenes del conjunto de datos.
El equipo de investigación realizó análisis estadísticos para evaluar varias métricas de desempeño para garantizar que los observadores del modelo emularan con precisión cómo un humano evaluaría las imágenes de TC del fantasma. Los investigadores son optimistas de que, con más esfuerzos, su modelo puede convertirse en un mecanismo viable para la evaluación automatizada de la calidad de la imagen de la TC. Confían en que la aplicación de sus observadores de modelo de IA a mayor escala permitirá evaluaciones de TC más rápidas y seguras que nunca.
“Nuestros resultados fueron muy prometedores, ya que ambos modelos entrenados funcionaron notablemente bien y lograron un porcentaje de error absoluto de menos del 5 %”, dijo la Dra. Sandra Doria, del Departamento de Física de la Universidad de Florencia, quien dirigió el equipo de investigación. "Esto indicó que los modelos podían identificar el objeto insertado en el fantasma con una precisión y confianza similares a las de un profesional humano, para casi todas las configuraciones de reconstrucción y tamaños y contrastes de anomalías".
Enlaces relacionados:
Universidad de Florencia
Últimas Imaginología General noticias
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
- Modelo de aprendizaje profundo diagnostica con precisión la EPOC con una sola inhalación
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más
Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
Las investigaciones actuales muestran que la precisión del diagnóstico de la enfermedad de Parkinson suele oscilar entre el 55% y el 78% durante los primeros cinco años de evaluación.... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más