Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Modelo de aprendizaje automático combina biomarcadores de metilación del ADN, clínicos y de imágenes para detección temprana del cáncer de pulmón

Por el equipo editorial de MedImaging en español
Actualizado el 22 Aug 2023
Print article
Imagen: Un modelo combinado de aprendizaje automático permite una clasificación precisa de nódulos pulmonares (Fotografía cortesía de Freepik)
Imagen: Un modelo combinado de aprendizaje automático permite una clasificación precisa de nódulos pulmonares (Fotografía cortesía de Freepik)

El cáncer de pulmón es responsable de un número significativo de muertes relacionadas con el cáncer en todo el mundo. Aunque varios tratamientos, entre ellos la quimioterapia, la inmunoterapia y la cirugía, han progresado, el panorama general para los pacientes con cáncer de pulmón sigue siendo sombrío. Esto se debe principalmente a un diagnóstico tardío, a menudo en las etapas III o IV, cuando la tasa de supervivencia a cinco años cae por debajo del 10 %. La detección temprana en las etapas 0 a II podría reducir significativamente la mortalidad, pero la falta de tecnologías sensibles y síntomas perceptibles en las primeras etapas presenta desafíos sustanciales.

Los biomarcadores de metilación del ácido desoxirribonucleico (ADN) han demostrado potencial para la detección temprana del cáncer de pulmón, ya que indican eventos relacionados con el inicio del tumor. El uso de métodos de secuenciación de próxima generación para identificar patrones de metilación en el ADN tumoral circulante podría permitir la detección no invasiva del cáncer de pulmón. Si bien la tomografía computarizada de baja dosis (TCBD) ha sido eficaz en la detección temprana entre los grupos de alto riesgo, determinar el riesgo de malignidad de los nódulos pulmonares mediante TCBD sigue siendo un desafío. Ahora, los investigadores han desarrollado y validado un modelo combinado de aprendizaje automático que comprende biomarcadores de metilación del ADN extracelular, clínicos y de imágenes que mejora la clasificación de los nódulos pulmonares y permite un diagnóstico más temprano del cáncer de pulmón.

En el nuevo estudio, investigadores de la Universidad Médica de Guangzhou (Guangzhou, China) desarrollaron un modelo combinado de biomarcadores clínicos y de imagen (CIBM) que utiliza algoritmos de aprendizaje automático para diferenciar nódulos pulmonares malignos y benignos. Cuando se integra con PulmoSeek, un modelo de metilación del ADN extracelular preexistente, el modelo CIBM puede identificar nódulos de pequeño tamaño para diagnosticar el cáncer de pulmón en sus etapas iniciales. Para su estudio, los investigadores inscribieron participantes de 18 años o más, con tipos específicos de nódulos pulmonares, en 20 ciudades chinas. Utilizando más de 800 muestras, los investigadores entrenaron el algoritmo de aprendizaje automático del modelo CIBM para distinguir entre tumores benignos y malignos. Luego, este modelo CIBM se integró con PulmoSeek para crear PulmoSeek Plus, un modelo de diagnóstico combinado. Utilizando el análisis de la curva de decisión, el equipo evaluó su aplicación clínica y clasificó los nódulos en grupos de riesgo. El objetivo era evaluar el desempeño y la capacidad de diagnóstico de tres modelos: PulmoSeek, CIBM y PulmoSeek Plus.

Los resultados mostraron que PulmoSeek Plus tiene potencial para  diagnosticar exitosamente la etapa temprana de nódulos pulmonares benignos o malignos. Utilizado junto con TCBD, este modelo podría ser una herramienta poderosa en la evaluación clínica temprana del cáncer de pulmón. La combinación de CIBM con el modelo PulmoSeek aumentó la sensibilidad de la clasificación de nódulos en un 6 % y el valor predictivo negativo en un 24 %. Además, el desempeño del modelo se mantuvo sólido en los diferentes tipos, tamaños y etapas de nódulos pulmonares, con sensibilidades de caracterización para nódulos en etapa temprana y pequeños de 0,98 y 0,99, respectivamente. Particularmente notable fue su sensibilidad de caracterización del 100 % para nódulos subsólidos, que normalmente son difíciles de categorizar utilizando solo TCBD. La creación del modelo PulmoSeek Plus marca un avance significativo en la detección temprana del cáncer de pulmón. Dado que únicamente requiere muestras de sangre e imágenes de tomografía computarizada no invasivas, el modelo ofrece un enfoque eficiente y prometedor que podría cambiar fundamentalmente la forma en que se diagnostica y trata el cáncer de pulmón.

Enlaces relacionados:
Universidad Médica de Guangzhou  

New
Specimen Radiography System
Trident HD
New
MRI Infusion Workstation
BeneFusion MRI Station
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
Ultrasonic Pocket Doppler
SD1

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Ultrasonido

ver canal
Imagen: el nuevo tipo de célula T Sonogenetic EchoBack-CAR (Foto cortesía de Longwei Liu/USC)

Células inmunitarias activadas por ultrasonido destruyen células cancerosas

La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más