La IA predice el riesgo cardíaco y la mortalidad a partir de tomografías computarizadas de tórax de rutina
Por el equipo editorial de MedImaging en español Actualizado el 06 Jun 2024 |

Las enfermedades cardíacas siguen siendo la principal causa de muerte y se pueden prevenir en gran medida; sin embargo, muchas personas no son conscientes de su riesgo hasta que se vuelve grave. La detección temprana mediante exámenes de detección puede revelar problemas cardíacos, identificando a personas que pueden necesitar más exámenes o una posible intervención. Si bien los métodos de detección tradicionales a menudo miden indicadores sanguíneos como los niveles de colesterol y triglicéridos, las tomografías computarizadas (TC) pueden ofrecer una gran cantidad de datos en tiempo real sobre la salud del corazón. Sin embargo, la adquisición de imágenes cardíacas cuantitativas y detalladas generalmente requiere equipo y tintes especializados, lo que hace que las tomografías computarizadas cardíacas sean costosas y no se utilicen ampliamente. Por otro lado, las tomografías computarizadas de tórax de rutina se realizan comúnmente por diversos motivos, como detectar infecciones pulmonares o cáncer. Ahora, un nuevo estudio ha descubierto que estas tomografías computarizadas de rutina pueden usarse potencialmente como una herramienta de detección de enfermedades cardíacas.
Un equipo colaborativo del Centro Médico Cedars-Sinai (Los Ángeles, CA, EUA) está aprovechando la inteligencia artificial (IA) para analizar tomografías computarizadas de tórax estándar para predecir los riesgos de mortalidad. Su investigación ha identificado varios indicadores cardíacos dentro de estas exploraciones que se correlacionan con un mayor riesgo de muerte, sentando las bases para exámenes cardíacos más efectivos. El sistema de inteligencia artificial examina imágenes de miles de pacientes para extraer automáticamente características de pronóstico de las tomografías computarizadas de tórax de rutina, características que originalmente no eran objetivo de estas exploraciones. Luego, estos indicadores se agregan y analizan para predecir la probabilidad de mortalidad relacionada con el corazón.
Tradicionalmente, los radiólogos evalúan el riesgo cardíaco identificando anomalías en las imágenes. El innovador enfoque de IA ha mejorado significativamente la clasificación de riesgos más allá de este estándar convencional. La integración de esta tecnología de IA en los flujos de trabajo clínicos existentes ha demostrado ser sencilla y ya se ha implementado en Cedars-Sinai con fines de investigación. Esta herramienta de inteligencia artificial ahora se utiliza para evaluar de forma rutinaria las tomografías computarizadas en busca de factores de pronóstico cardíaco. Los radiólogos que normalmente se centran en la detección de cáncer, es posible que no busquen problemas cardíacos como la calcificación arterial o el agrandamiento de la cámara. La IA puede ayudarlos examinando estas imágenes en segundo plano, identificando a los pacientes que pueden necesitar una evaluación cardíaca adicional y un tratamiento potencialmente temprano.
"Hay mucha información importante oculta en las tomografías computarizadas de tórax", explicó el autor principal del estudio, Piotr Slomka, Ph.D., profesor del Cedars-Sinai. "Al utilizar la IA para descubrir y analizar señales de pronóstico clave en estas exploraciones, podríamos realizar exámenes cardíacos oportunistas y potencialmente impulsar tratamientos o cambios en el estilo de vida, que en última instancia podrían salvar vidas".
Enlaces relacionados:
Centro Médico Cedars-Sinai
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más