Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
|
Por el equipo editorial de MedImaging en español Actualizado el 22 Mar 2025 |

La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios en el manejo clínico. La radiografía de tórax es uno de los exámenes radiológicos que se realizan con mayor frecuencia, pero su interpretación requiere un alto nivel de experiencia y un tiempo considerable.
Si bien los radiólogos son altamente precisos, sus interpretaciones a menudo enfrentan desafíos de escalabilidad debido al creciente volumen de estudios de imagen. Esto resulta en un aumento de la carga de trabajo, retrasos en el diagnóstico, interrupciones en los flujos de trabajo clínicos y un mayor riesgo de mala interpretación. Las tecnologías de inteligencia artificial (IA) generativa multimodal, capaces de procesar y generar diversos tipos de datos, incluidas imágenes y texto, tienen el potencial de transformar la radiología. Un nuevo estudio ha evaluado el valor clínico de un modelo de IA generativa multimodal específico de dominio para la interpretación de radiografías de tórax, con el objetivo de mejorar el flujo de trabajo radiológico.
Investigadores del Mass General Brigham (Boston, MA, EUA), junto con sus colaboradores, llevaron a cabo un estudio retrospectivo, secuencial, multilector y multicaso. Utilizaron 758 radiografías de tórax de un conjunto de datos público (2009-2017) para evaluar la eficacia de los informes generados por IA. Cinco radiólogos interpretaron las radiografías de tórax en dos sesiones: una sin informes generados por IA y la otra con informes preliminares generados por IA. Dos radiólogos torácicos experimentados evaluaron diversos factores, como el tiempo de lectura, el nivel de concordancia en los informes (utilizando el sistema RADPEER) y la calidad de los informes (en una escala de cinco puntos). Estas métricas se compararon entre las dos sesiones realizadas entre octubre y diciembre de 2023. Se empleó un modelo lineal mixto generalizado para analizar los tiempos de lectura, la concordancia de los informes y las puntuaciones de calidad. Además, se examinó un subconjunto de 258 radiografías de tórax para evaluar la exactitud factual de los informes, comparando las sensibilidades y especificidades entre las dos sesiones mediante la prueba de McNemar.
El estudio, publicado en Radiology, reveló que los informes generados por IA redujeron el tiempo promedio de lectura de las radiografías de tórax (CXR) en un 42% en comparación con la evaluación no asistida de los radiólogos (19,8 segundos frente a 34,2 segundos). En el análisis de subconjunto de 258 casos, los investigadores encontraron que los informes generados por IA resultaron en un aumento de casi el 10% en la sensibilidad para detectar lesiones pleurales (87,4% frente a 77,7%) y un aumento de más del 6% en la sensibilidad para identificar un mediastino ensanchado (90,8% frente a 84,3%).
Sin la asistencia de IA, los investigadores observaron una amplia variabilidad entre los cinco radiólogos en cuanto a sensibilidad (de 54.2% a 80.7%) y especificidad (de 84.9% a 93.4%) para la detección de anomalías en las CXR. Sin embargo, al utilizar informes generados por IA, ese rango fue más estrecho: la sensibilidad varió entre 71.1% y 80.8%, y la especificidad entre 85.2% y 87.3%. Los investigadores concluyeron que el uso de un modelo de IA generativa multimodal específico de dominio mejoró tanto la eficiencia como la calidad de la generación de informes radiológicos.
Últimas Radiografía noticias
- Avance en rayos X captura tres tipos de contraste de imagen en una sola toma
- La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis
- Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres
- Estrategia híbrida con IA mejora la interpretación de mamografías
- IA predice riesgo personalizado de desarrollar cáncer de mama a cinco años
- Nueva técnica combina imágenes de rayos X y radar para un diagnóstico de cáncer más seguro
- Herramienta de IA ayuda a médicos a interpretar mejor las radiografías de tórax
- Tejido portátil para detección de rayos X permite escaneo diagnóstico en movimiento
- La IA ayuda a los radiólogos a detectar más lesiones en las mamografías
- IA detecta la enfermedad del hígado graso a partir de radiografías de tórax
- IA detecta enfermedades cardíacas ocultas en TC de tórax existentes
- Modelo de IA ultraligero rompe barreras en el diagnóstico del cáncer de pulmón
- Herramienta de IA para radiología identifica condiciones potencialmente mortales en milisegundos

- Algoritmo de aprendizaje automático identifica riesgo cardiovascular a partir de escaneos ósea de rutina
- La IA mejora la detección temprana de los cánceres de mama de intervalo
- Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
Canales
RM
ver canal
Nuevo enfoque de imagen para mejorar el tratamiento de lesiones de la médula espinal
La disfunción vascular en la médula espinal contribuye a múltiples afecciones neurológicas, como lesiones traumáticas y mielopatía cervical degenerativa, donde... Más
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... MásUltrasonido
ver canal
Sonda de ultrasonido obtiene imágenes de todo el órgano en 4D
Los trastornos de la microcirculación sanguínea pueden tener efectos devastadores, contribuyendo a la insuficiencia cardíaca, la insuficiencia renal y enfermedades crónicas.... Más
Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes
Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más
Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil
La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... MásMedicina Nuclear
ver canal
Las imágenes PET de la inflamación predicen la recuperación y guían la terapia tras un infarto cardíaco
El infarto agudo de miocardio puede provocar daño cardíaco permanente; sin embargo, los médicos aún carecen de herramientas fiables para identificar qué pacientes re... Más
Un enfoque radioteranóstico detecta, elimina y reprograma cánceres agresivos
Los cánceres agresivos como el osteosarcoma y el glioblastoma suelen resistir las terapias estándar, prosperar en entornos tumorales hostiles y reaparecer a pesar de la cirugía, la... MásImaginología General
ver canal
Enfoque de escaneo 3D permite una cirugía cerebral ultraprecisa
La navegación precisa es fundamental en neurocirugía, pero incluso pequeños errores de alineación pueden afectar los resultados cuando se opera en zonas profundas del cerebro.... Más
Herramienta de IA mejora el proceso de imágenes médicas en un 90%
La identificación precisa de distintas regiones dentro de estudios médicos, un proceso conocido como segmentación de imágenes médicas, es fundamental para el diagnóstico,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más







