Sistema de apoyo de decisiones requiere menos exámenes de imagenología
Por el equipo editorial de MedImaging en español Actualizado el 18 Aug 2010 |
Una nueva regla que previene al personal de apoyo médico de completar órdenes para exámenes de imagenología ambulatorias que probablemente sean negativos produjo una disminución notable de exámenes de bajo rendimiento para los pacientes.
Muchas instituciones médicas solicitan y programan exámenes de imagenología diagnóstica ambulatorios a través del uso del sistema de entrada de órdenes de radiología basado en la web. Algunos sistemas ofrecen retroalimentación en tiempo real, llamado apoyo de decisión, sobre la pertinencia de los exámenes que se están solicitando. Cuando entran el examen deseado en el sistema, el médico, o el personal de apoyo, debe también ingresar información clínica justificando la orden. Basado en esa información, el sistema de apoyo de decisión suministra un resultado de rendimiento variando de uno a nueve. El puntaje indica la probabilidad de que el examen seleccionado produzca resultados diagnósticos valiosos o positivos para esta serie de circunstancias clínicas.
Siguiendo los criterios apropiados del Colegio Americano de Radiología (Reston, VA, EUA), un puntaje de uno a tres es considerado de bajo rendimiento. Al usuario luego se le da la oportunidad de cancelar la orden o de elegir un examen diferente. Sin embargo, debido a que el personal de soporte médico no toma la decisión clínica, tienen menos probabilidad de cancelar o revisar una orden sin la aclaración adicional del médico.
Para manejar este problema, el Hospital General Massachusetts (MGH; Boston, MA, EUA) instaló una regla para prevenir al personal de soporte médico de completar órdenes computarizadas para tomografía computarizada (TC) ambulatoria, resonancia magnética (RM), y exámenes de medicina nuclear que recibieron puntajes de soporte de bajo rendimiento.
"Desarrollamos esta estrategia para animar a más médicos a probar el uso del sistema", dijo Vartan M. Vartanians, M.D., asociado de investigación clínica en el departamento de radiología del Hospital General Massachusetts. "Con más médicos involucrados, se ordenan menos exámenes de bajo rendimiento".
Después del cambio, la proporción de solicitudes totales de exámenes por los médicos que entran directamente al sistema aumentó a más del doble de 26-54% del total de número de solicitudes, mientras que el porcentaje de exámenes de bajo rendimiento solicitados disminuyó de 5,4%, del número total de solicitudes a 1,9%.
"Los médicos deben usar el sistema de apoyo de decisión para que sea efectivo, pero lograr que hagan eso puede ser difícil", dijo el Dr. Vartanians. "Nuestro trabajo demuestra que una alteración mínimamente interruptora en el sistema de entrada de la orden de radiología puede animar directamente al médico involucrado, y mejorar el cuidado del paciente reduciendo el número de exámenes de bajo rendimiento".
El estudio fue publicado en la edición de Junio de 2010 de la revista Radiology.
Enlace relacionado:
Massachusetts General Hospital
Muchas instituciones médicas solicitan y programan exámenes de imagenología diagnóstica ambulatorios a través del uso del sistema de entrada de órdenes de radiología basado en la web. Algunos sistemas ofrecen retroalimentación en tiempo real, llamado apoyo de decisión, sobre la pertinencia de los exámenes que se están solicitando. Cuando entran el examen deseado en el sistema, el médico, o el personal de apoyo, debe también ingresar información clínica justificando la orden. Basado en esa información, el sistema de apoyo de decisión suministra un resultado de rendimiento variando de uno a nueve. El puntaje indica la probabilidad de que el examen seleccionado produzca resultados diagnósticos valiosos o positivos para esta serie de circunstancias clínicas.
Siguiendo los criterios apropiados del Colegio Americano de Radiología (Reston, VA, EUA), un puntaje de uno a tres es considerado de bajo rendimiento. Al usuario luego se le da la oportunidad de cancelar la orden o de elegir un examen diferente. Sin embargo, debido a que el personal de soporte médico no toma la decisión clínica, tienen menos probabilidad de cancelar o revisar una orden sin la aclaración adicional del médico.
Para manejar este problema, el Hospital General Massachusetts (MGH; Boston, MA, EUA) instaló una regla para prevenir al personal de soporte médico de completar órdenes computarizadas para tomografía computarizada (TC) ambulatoria, resonancia magnética (RM), y exámenes de medicina nuclear que recibieron puntajes de soporte de bajo rendimiento.
"Desarrollamos esta estrategia para animar a más médicos a probar el uso del sistema", dijo Vartan M. Vartanians, M.D., asociado de investigación clínica en el departamento de radiología del Hospital General Massachusetts. "Con más médicos involucrados, se ordenan menos exámenes de bajo rendimiento".
Después del cambio, la proporción de solicitudes totales de exámenes por los médicos que entran directamente al sistema aumentó a más del doble de 26-54% del total de número de solicitudes, mientras que el porcentaje de exámenes de bajo rendimiento solicitados disminuyó de 5,4%, del número total de solicitudes a 1,9%.
"Los médicos deben usar el sistema de apoyo de decisión para que sea efectivo, pero lograr que hagan eso puede ser difícil", dijo el Dr. Vartanians. "Nuestro trabajo demuestra que una alteración mínimamente interruptora en el sistema de entrada de la orden de radiología puede animar directamente al médico involucrado, y mejorar el cuidado del paciente reduciendo el número de exámenes de bajo rendimiento".
El estudio fue publicado en la edición de Junio de 2010 de la revista Radiology.
Enlace relacionado:
Massachusetts General Hospital
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más