Mejora tecnología de ultrasonido con nanobarras de oro encerradas en polímero
Por el equipo editorial de MedImaging en español Actualizado el 30 Apr 2013 |

Imagen: Una señal óptica, representada por la flecha roja, entra en contacto con el metamaterial e interpreta las ondas de ultrasonido, generando una señal óptica alterada que se procesa para producir una imagen de alta calidad.
La tecnología de ultrasonido podrá mejorarse pronto significativamente lo que le permitiría generar imágenes de alta resolución y alta calidad, debido al desarrollo de un nuevo material clave.
El material, que convierte las ondas de ultrasonido en señales ópticas que se pueden usar para producir una imagen, es el resultado de un esfuerzo colaborativo del Prof. Vladislav Yakovlev, un profesor en el departamento de ingeniería biomédica de la Universidad de Texas A&M (College Station, EUA), e investigadores del King’s College de Londres (Reino Unido ), La Universidad de la Reina en Belfast (Irlanda), y la Universidad de Massachusetts Lowell (EUA). Los resultados de su estudio aparecen en la edición del 1 de Marzo de 2013 de la revista Advanced Materials.
La sustancia modificada, conocida como un “metamaterial,” ofrece ventajas sustanciales sobre la tecnología tradicional de ultrasonido, que genera imágenes transformando las ondas de ultrasonido en señales eléctricas, explicó el Prof. Yakovlev. Aunque esa tecnología ha mejorado con los años, similar a la mejora en las imágenes de los sonogramas, está principalmente restringida por el ancho de banda y las limitaciones de sensibilidad, anotó. Esas limitaciones, añadió, han sido el obstáculo principal cuando se van a producir imágenes de alta calidad que puedan servir como herramientas diagnósticas poderosas.
El metamaterial desarrollado por el Prof. Yakovlev y sus colegas no está sujeto a esas limitaciones, principalmente porque convierte las ondas de ultrasonido en señales ópticas en vez de eléctricas. El procesamiento óptico de la señal no limita la banda ancha o la sensibilidad del transductor (convertidor), que es vital para generar imágenes muy detalladas, dijo el Prof. Yakovlev. “Una banda ancha alta permite tomar la muestras del cambio de distancia de las ondas acústicas con una precisión alta”, anotó el Prof. Yakovlev. “Esto se traduce en una imagen que muestra mayor detalle. La sensibilidad mayor le permite ver más profundo en el tejido, sugiriendo que tenemos el potencial para generar imágenes que pueden no haber sido posibles con la tecnología del ultrasonido convencional”.
Lo que significa esto es que este material nuevo puede permitir que los dispositivos de ultrasonido vean lo que aún no han podido ver. El avance puede mejorar significativamente una tecnología que se usa en varias aplicaciones biomédicas. Además de ser usado para visualizar los fetos durante el cuidado regular y de urgencias, el ultrasonido se usa para propósitos diagnósticos en eventos de trauma y aun como un medio de descomponer el tejido y acelerar los efectos de las terapias de medicamentos.
Aunque esta investigación aún no está lista para la incorporación en la tecnología de ultrasonido, ha mostrado efectivamente cómo la tecnología convencional puede ser sustancialmente mejorada usando el material de ingeniería recientemente construido creado por su equipo, reportó el Prof. Yakovlev. La sustancia está compuesta de nanobarras de oro integradas en un polímero llamado un polipirrol. Una señal óptica es enviada a este compuesto donde interactúa con y es cambiada en ondas de ultrasonido antes de pasar a través del material. Un dispositivo de detección luego lee la señal óptica cambiada, analizando los cambios en sus características ópticas para procesar una imagen de resolución más alta.
“Desarrollamos un material que permite el procesamiento de la señal óptica del ultrasonido”, concluyó el Prof. Yakovlev. “No existe nada como este material en la naturaleza así que construimos un material que suministrara las propiedades que necesitábamos. Tiene sensibilidad mayor y ancho de banda más amplio. Podemos ir de 0–150 MHz sin sacrificar la sensibilidad. La tecnología actual típicamente experimenta una disminución sustancial en la sensibilidad alrededor de 50 MHz. Este metamaterial puede convertir eficazmente una onda acústica en una señal óptica sin restringir el ancho de banda del transductor, y su potencial en aplicaciones médicas representa la primera implementación práctica de este metamaterial.”
Enlaces relacionados:
Texas A&M University
King’s College London
Queen’s University Belfast
University of Massachusetts Lowell
El material, que convierte las ondas de ultrasonido en señales ópticas que se pueden usar para producir una imagen, es el resultado de un esfuerzo colaborativo del Prof. Vladislav Yakovlev, un profesor en el departamento de ingeniería biomédica de la Universidad de Texas A&M (College Station, EUA), e investigadores del King’s College de Londres (Reino Unido ), La Universidad de la Reina en Belfast (Irlanda), y la Universidad de Massachusetts Lowell (EUA). Los resultados de su estudio aparecen en la edición del 1 de Marzo de 2013 de la revista Advanced Materials.
La sustancia modificada, conocida como un “metamaterial,” ofrece ventajas sustanciales sobre la tecnología tradicional de ultrasonido, que genera imágenes transformando las ondas de ultrasonido en señales eléctricas, explicó el Prof. Yakovlev. Aunque esa tecnología ha mejorado con los años, similar a la mejora en las imágenes de los sonogramas, está principalmente restringida por el ancho de banda y las limitaciones de sensibilidad, anotó. Esas limitaciones, añadió, han sido el obstáculo principal cuando se van a producir imágenes de alta calidad que puedan servir como herramientas diagnósticas poderosas.
El metamaterial desarrollado por el Prof. Yakovlev y sus colegas no está sujeto a esas limitaciones, principalmente porque convierte las ondas de ultrasonido en señales ópticas en vez de eléctricas. El procesamiento óptico de la señal no limita la banda ancha o la sensibilidad del transductor (convertidor), que es vital para generar imágenes muy detalladas, dijo el Prof. Yakovlev. “Una banda ancha alta permite tomar la muestras del cambio de distancia de las ondas acústicas con una precisión alta”, anotó el Prof. Yakovlev. “Esto se traduce en una imagen que muestra mayor detalle. La sensibilidad mayor le permite ver más profundo en el tejido, sugiriendo que tenemos el potencial para generar imágenes que pueden no haber sido posibles con la tecnología del ultrasonido convencional”.
Lo que significa esto es que este material nuevo puede permitir que los dispositivos de ultrasonido vean lo que aún no han podido ver. El avance puede mejorar significativamente una tecnología que se usa en varias aplicaciones biomédicas. Además de ser usado para visualizar los fetos durante el cuidado regular y de urgencias, el ultrasonido se usa para propósitos diagnósticos en eventos de trauma y aun como un medio de descomponer el tejido y acelerar los efectos de las terapias de medicamentos.
Aunque esta investigación aún no está lista para la incorporación en la tecnología de ultrasonido, ha mostrado efectivamente cómo la tecnología convencional puede ser sustancialmente mejorada usando el material de ingeniería recientemente construido creado por su equipo, reportó el Prof. Yakovlev. La sustancia está compuesta de nanobarras de oro integradas en un polímero llamado un polipirrol. Una señal óptica es enviada a este compuesto donde interactúa con y es cambiada en ondas de ultrasonido antes de pasar a través del material. Un dispositivo de detección luego lee la señal óptica cambiada, analizando los cambios en sus características ópticas para procesar una imagen de resolución más alta.
“Desarrollamos un material que permite el procesamiento de la señal óptica del ultrasonido”, concluyó el Prof. Yakovlev. “No existe nada como este material en la naturaleza así que construimos un material que suministrara las propiedades que necesitábamos. Tiene sensibilidad mayor y ancho de banda más amplio. Podemos ir de 0–150 MHz sin sacrificar la sensibilidad. La tecnología actual típicamente experimenta una disminución sustancial en la sensibilidad alrededor de 50 MHz. Este metamaterial puede convertir eficazmente una onda acústica en una señal óptica sin restringir el ancho de banda del transductor, y su potencial en aplicaciones médicas representa la primera implementación práctica de este metamaterial.”
Enlaces relacionados:
Texas A&M University
King’s College London
Queen’s University Belfast
University of Massachusetts Lowell
Últimas Ultrasonido noticias
- Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
- Células inmunitarias activadas por ultrasonido destruyen células cancerosas
- Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
- Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
- El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
- Inteligencia artificial detecta enfermedad hepática mediante ecocardiogramas
- Imágenes por ultrasonido rastrean de forma no invasiva la respuesta tumoral a la radioterapia y la inmunoterapia
- La IA mejora la detección de defectos cardíacos congénitos en ecografías prenatales rutinarias
- IA diagnostica enfermedades pulmonares a partir de ecografías con una precisión del 96.57%
- Nuevo agente de contraste para ultrasonido garantiza diagnósticos médicos seguros y asequibles
- Microburbujas dirigidas por ultrasonidos potencian la respuesta inmunitaria contra los tumores
- Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias
- Modelos de IA superan a expertos humanos en la identificación de cáncer de ovario en imágenes de ultrasonido
- Ecografía mamaria automatizada ofrece una alternativa a la mamografía en entornos de bajos recursos
- Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica
- Parche ultrasónico portátil permite el monitoreo continuo de la presión arterial
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más