Fotoacústica para detectar cáncer de mama
Por el equipo editorial de MedImaging en español Actualizado el 05 Nov 2014 |

Imagen: Se ha diseñado una nueva tecnología láser para detectar el cáncer de mama mediante fotoacústica (Fotografía cortesía de la Universidad Carlos III de Madrid).
Unos científicos españoles están utilizando una nueva tecnología con láser para detectar el cáncer de mama mediante fotoacústica. Este nuevo método podría convertirse en una alternativa a la mamografía y la ecografía.
Este proyecto científico europeo ha sido coordinado por la Universidad Carlos III de Madrid (UC3M; España) y es la primer área de investigación de Imágenes Ópticas y Técnicas con Láser para Aplicaciones Biomédicas (OILTEBIA), que celebró su primera “Escuela Europea de Verano” sobre técnicas con láser e imágenes ópticas para aplicaciones biomédicas del 15 al 19 de septiembre de 2014, en el campus de Leganés de la UC3M.
Este novedoso campo de investigación científica tiene el potencial de cambiar dentro de pocos años la forma como se ve la medicina, de acuerdo con algunos de los expertos reunidos en esa escuela de verano, donde varios investigadores del consorcio OILTEBIA presentaron sus primeros resultados al resto de la red. “En la actualidad, se están investigando varias técnicas para obtener imágenes biomédicas con base en tecnologías de rayos láser y cada año se hacen nuevos avances”, dijo el coordinador de OILTEBIA Horacio Lamela, jefe del grupo de optoelectrónica y tecnología láser de la UC3M.
En este sentido, existen técnicas como la tomografía óptica difusa, que se utilizan para explorar el funcionamiento y los trastornos del cerebro y de otros órganos a través de medios no invasivos. Otra investigación significativa es la obtención de imágenes fotoacústicas para la detección del cáncer de mama. Una de las ventajas que tiene esta técnica sobre la de rayos X es que no se emplea radiación ionizante. Esta tecnología utiliza la propiedad que tienen los tejidos de generar ondas ultrasónicas cuando son iluminadas con pulsos luminosos cortos y de alta energía. Estas señales hacen posible determinar la concentración de cromóforos (por ejemplo, hemoglobina oxigenada, hemoglobina desoxigenada o lípidos) o hacer el mapa de un tejido para determinar su grado de angiogénesis, un proceso que se produce durante el crecimiento de un tumor cuando este se transforma en maligno, explicaron los investigadores de la UC3M. Durante las sesiones de la Escuela Europea de Verano, se celebró un taller sobre cómo obtener este tipo de imágenes con un sistema láser para obtener imágenes optoacústicas, disponible en su laboratorio, así como acerca de un simulador del tejido mamario.
Los científicos también esperan lograr avances en materia de hardware, como el diseño de fuentes de pulsos para los diodos de láser de alta energía y la caracterización del láser para generar ondas fotoacústicas. “Dado que algunos de los socios del proyecto son empresas grandes, es posible que los investigadores les presenten diseños para algunos dispositivos muy interesantes e innovadores”, dijo el Dr. Horacio Lamela, quien señaló que se ha realizado mucho trabajo relacionado con el procesamiento de señales, el cual podría llevar a producir nuevos avances, tales como algoritmos para reconstrucción tridimensional (3D) y diversos tipos de fusión de imágenes, como la espectroscopia óptica y el procesamiento de señales ultrasónicas. “El uso de diferentes longitudes de onda nos permite no sólo mapear los tejidos, sino también detectar determinadas sustancias y sus concentraciones”, explicó el Dr. Lamela.
Los científicos explicaron que, durante el proceso de investigación, es difícil saber cuánto tiempo podría requerirse para lograr que un dispositivo o sistema esté disponible en el mercado. Por otra parte, cuando se intentan aplicar nuevas tecnologías en un entorno clínico, hay que tener en cuenta cómo se produce esta transferencia tecnológica. “Una tecnología prometedora podría tomar varios años para estar disponible al ciento por ciento, ya que se le debe realizar una serie de exhaustivos controles, incluso aunque sean evidentes los beneficios con respecto a las técnicas que se están utilizando”, señalaron los científicos. El diseño, el desarrollo y las fases de prueba se suelen repetir para perfeccionar la eficacia y la eficiencia de los sistemas. Más tarde, deben llevarse a cabo estudios preclínicos y luego las pruebas clínicas con seres humanos y todo ello requiere de una serie de certificaciones y estandarizaciones que permitan ofrecer la máxima seguridad del usuario.
El objetivo de OILTEBIA es proporcionar una capacitación avanzada a los investigadores en las nuevas técnicas con láser para obtener imágenes ópticas biomédicas, cuyas aplicaciones incluyen todo, desde la investigación básica y el descubrimiento de medicamentos a nuevas imágenes para el diagnóstico clínico. Estas nuevas técnicas para obtención de imágenes médicas están empezando a desplazarse desde el laboratorio hacia el hospital.
Enlaces relacionados:
Universidad Carlos III de Madrid
OILTEBIA
Este proyecto científico europeo ha sido coordinado por la Universidad Carlos III de Madrid (UC3M; España) y es la primer área de investigación de Imágenes Ópticas y Técnicas con Láser para Aplicaciones Biomédicas (OILTEBIA), que celebró su primera “Escuela Europea de Verano” sobre técnicas con láser e imágenes ópticas para aplicaciones biomédicas del 15 al 19 de septiembre de 2014, en el campus de Leganés de la UC3M.
Este novedoso campo de investigación científica tiene el potencial de cambiar dentro de pocos años la forma como se ve la medicina, de acuerdo con algunos de los expertos reunidos en esa escuela de verano, donde varios investigadores del consorcio OILTEBIA presentaron sus primeros resultados al resto de la red. “En la actualidad, se están investigando varias técnicas para obtener imágenes biomédicas con base en tecnologías de rayos láser y cada año se hacen nuevos avances”, dijo el coordinador de OILTEBIA Horacio Lamela, jefe del grupo de optoelectrónica y tecnología láser de la UC3M.
En este sentido, existen técnicas como la tomografía óptica difusa, que se utilizan para explorar el funcionamiento y los trastornos del cerebro y de otros órganos a través de medios no invasivos. Otra investigación significativa es la obtención de imágenes fotoacústicas para la detección del cáncer de mama. Una de las ventajas que tiene esta técnica sobre la de rayos X es que no se emplea radiación ionizante. Esta tecnología utiliza la propiedad que tienen los tejidos de generar ondas ultrasónicas cuando son iluminadas con pulsos luminosos cortos y de alta energía. Estas señales hacen posible determinar la concentración de cromóforos (por ejemplo, hemoglobina oxigenada, hemoglobina desoxigenada o lípidos) o hacer el mapa de un tejido para determinar su grado de angiogénesis, un proceso que se produce durante el crecimiento de un tumor cuando este se transforma en maligno, explicaron los investigadores de la UC3M. Durante las sesiones de la Escuela Europea de Verano, se celebró un taller sobre cómo obtener este tipo de imágenes con un sistema láser para obtener imágenes optoacústicas, disponible en su laboratorio, así como acerca de un simulador del tejido mamario.
Los científicos también esperan lograr avances en materia de hardware, como el diseño de fuentes de pulsos para los diodos de láser de alta energía y la caracterización del láser para generar ondas fotoacústicas. “Dado que algunos de los socios del proyecto son empresas grandes, es posible que los investigadores les presenten diseños para algunos dispositivos muy interesantes e innovadores”, dijo el Dr. Horacio Lamela, quien señaló que se ha realizado mucho trabajo relacionado con el procesamiento de señales, el cual podría llevar a producir nuevos avances, tales como algoritmos para reconstrucción tridimensional (3D) y diversos tipos de fusión de imágenes, como la espectroscopia óptica y el procesamiento de señales ultrasónicas. “El uso de diferentes longitudes de onda nos permite no sólo mapear los tejidos, sino también detectar determinadas sustancias y sus concentraciones”, explicó el Dr. Lamela.
Los científicos explicaron que, durante el proceso de investigación, es difícil saber cuánto tiempo podría requerirse para lograr que un dispositivo o sistema esté disponible en el mercado. Por otra parte, cuando se intentan aplicar nuevas tecnologías en un entorno clínico, hay que tener en cuenta cómo se produce esta transferencia tecnológica. “Una tecnología prometedora podría tomar varios años para estar disponible al ciento por ciento, ya que se le debe realizar una serie de exhaustivos controles, incluso aunque sean evidentes los beneficios con respecto a las técnicas que se están utilizando”, señalaron los científicos. El diseño, el desarrollo y las fases de prueba se suelen repetir para perfeccionar la eficacia y la eficiencia de los sistemas. Más tarde, deben llevarse a cabo estudios preclínicos y luego las pruebas clínicas con seres humanos y todo ello requiere de una serie de certificaciones y estandarizaciones que permitan ofrecer la máxima seguridad del usuario.
El objetivo de OILTEBIA es proporcionar una capacitación avanzada a los investigadores en las nuevas técnicas con láser para obtener imágenes ópticas biomédicas, cuyas aplicaciones incluyen todo, desde la investigación básica y el descubrimiento de medicamentos a nuevas imágenes para el diagnóstico clínico. Estas nuevas técnicas para obtención de imágenes médicas están empezando a desplazarse desde el laboratorio hacia el hospital.
Enlaces relacionados:
Universidad Carlos III de Madrid
OILTEBIA
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más