MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Un programa tipo Tetris podría acelerar la detección del cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 03 Oct 2018
Print article
Imagen: Cultivo tridimensional de células de cáncer de mama humano, con el ADN coloreado de azul y una proteína en la membrana de la superficie celular de color verde (Fotografía cortesía de Tom Misteli, Ph.D., y de Karen Meaburn, Ph.D/NIH IRP) .
Imagen: Cultivo tridimensional de células de cáncer de mama humano, con el ADN coloreado de azul y una proteína en la membrana de la superficie celular de color verde (Fotografía cortesía de Tom Misteli, Ph.D., y de Karen Meaburn, Ph.D/NIH IRP) .
Los investigadores del Instituto Australiano de Aprendizaje Automático de la Universidad de Adelaida (Adelaida, Australia Meridional, Australia) desarrollan un programa de análisis de imágenes médicas, completamente automatizado, para detectar tumores de mama que utiliza un estilo único para centrarse en el área afectada. Usando la inteligencia artificial (IA), el programa autónomo junto con un examen de resonancia magnética emplea el movimiento transversal y el estilo de un antiguo videojuego para examinar el área de la mama.

El programa se creó aplicando métodos de aprendizaje de refuerzo profundo, una forma de IA que permite a las computadoras y máquinas aprender a realizar tareas complejas sin ser programadas por humanos. Esto permite que el programa analice de forma independiente el tejido mamario. Los investigadores lograron entrenar el programa de computadora utilizando una cantidad relativamente menor de datos, lo que plantea un desafío crítico en las imágenes médicas.

"Así como el antiguo videojuego Tetris manipuló las formas geométricas para adaptarse a un espacio, este programa usa un cuadrado verde para navegar y buscar sobre la imagen del seno para localizar las lesiones. El cuadrado cambia a rojo si se detecta una lesión", dijo el candidato a doctorado de la Universidad de Adelaida, Gabriel Maicas Suso. "Nuestra investigación muestra que este método único es 1,78 veces más rápido para encontrar una lesión que los métodos existentes para detectar el cáncer de mama, y los resultados son igual de exactos".

"Al incorporar el aprendizaje automático en el análisis de imágenes médicas, hemos desarrollado un programa que localiza las lesiones de forma intuitiva y rápida", dijo el Profesor Asociado, Gustavo Carneiro del AIML. "Se necesita más investigación antes de que el programa se pueda usar clínicamente. Nuestro objetivo final es que los radiólogos utilicen este método de detección para complementar, respaldar y ayudar a su importante trabajo de hacer un pronóstico preciso y rápido. La IA tiene un papel importante que jugar en el campo de la imagenología médica; el potencial para usar la inteligencia artificial en este campo no tiene límites".

Enlace relacionado:
Instituto Australiano de Aprendizaje Automático de la Universidad de Adelaida

NMUS & MSK Ultrasound
InVisus Pro
Radiation Therapy Treatment Software Application
Elekta ONE
Multi-Use Ultrasound Table
Clinton
40/80-Slice CT System
uCT 528

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más