Los científicos usan el aprendizaje automático y los exámenes de resonancia magnética para predecir las dificultades de aprendizaje
Por el equipo editorial de MedImaging en español Actualizado el 17 Oct 2018 |
Un equipo de científicos de la Unidad de Cognición y Ciencias del Cerebro del Consejo de Investigación Médica (MRC) de la Universidad de Cambridge (Cambridge, Inglaterra, Reino Unido) utilizó el aprendizaje automático, un tipo de inteligencia artificial, con datos de cientos de niños que luchan en la escuela para identificar grupos de dificultades de aprendizaje, que no coinciden con su diagnóstico anterior. Según los investigadores, esto refuerza la necesidad de que los niños reciban evaluaciones detalladas de sus habilidades cognitivas para identificar el mejor tipo de apoyo.
Para el estudio, los investigadores reclutaron a 550 niños que habían sido remitidos a una clínica porque tenían dificultades en la escuela. Las investigaciones anteriores sobre las dificultades de aprendizaje se habían centrado en niños a los que ya se les había diagnosticado una dificultad particular, como el trastorno por déficit de atención con hiperactividad (TDAH), un trastorno del espectro autista o dislexia. El último estudio incluyó a niños con todas las dificultades, independientemente de su diagnóstico, para capturar mejor el rango de dificultades entre ellas y la superposición de las categorías de diagnóstico.
Los investigadores aplicaron el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades al proporcionarle al algoritmo informático una gran cantidad de datos de pruebas cognitivas de cada niño, incluidas las medidas de audición, el razonamiento espacial, la resolución de problemas, el vocabulario y la memoria. Basado en estos datos, el algoritmo sugirió que los niños encajan mejor en cuatro grupos de dificultades. Estos grupos se alinearon estrechamente con otros datos sobre los niños, como los informes de los padres sobre sus dificultades de comunicación y los datos educativos sobre lectura y matemáticas.
Sin embargo, no hubo correspondencia con sus diagnósticos previos. Con el fin de verificar si estas agrupaciones correspondían a diferencias biológicas, los grupos se verificaron en las resonancias magnéticas cerebrales de 184 niños. Las agrupaciones reflejaban patrones de conectividad en partes del cerebro de los niños, lo que sugiere que el aprendizaje automático identificaba diferencias que reflejan en parte la biología subyacente. Dos de los cuatro grupos identificados fueron: dificultades con las habilidades de memoria de trabajo y dificultades con el procesamiento de sonidos en palabras. Los otros dos grupos identificados fueron: niños con amplias dificultades cognitivas en muchas áreas, y niños con resultados de pruebas cognitivas típicas para su edad. Los investigadores notaron que los niños en la agrupación que tenían resultados de pruebas cognitivas que eran típicos para su edad podían tener, en todo caso, otras dificultades que afectaban su escolarización, como las dificultades de comportamiento, que no se habían incluido en el aprendizaje automático.
"Nuestro estudio es el primero de su tipo en aplicar el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades", dijo el Dr. Duncan Astle, de la Unidad de Cognición y Ciencias del Cerebro del MRC en la Universidad de Cambridge, quien dirigió el estudio.
"Estos son hallazgos interesantes en una etapa temprana que comienzan a investigar cómo podemos aplicar nuevas tecnologías, como el aprendizaje automático, para comprender mejor la función cerebral", dijo la Dra. Joanna Latimer, Directora de Neurociencias y Salud Mental del MRC.
Enlace relacionado:
Universidad de Cambridge
Para el estudio, los investigadores reclutaron a 550 niños que habían sido remitidos a una clínica porque tenían dificultades en la escuela. Las investigaciones anteriores sobre las dificultades de aprendizaje se habían centrado en niños a los que ya se les había diagnosticado una dificultad particular, como el trastorno por déficit de atención con hiperactividad (TDAH), un trastorno del espectro autista o dislexia. El último estudio incluyó a niños con todas las dificultades, independientemente de su diagnóstico, para capturar mejor el rango de dificultades entre ellas y la superposición de las categorías de diagnóstico.
Los investigadores aplicaron el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades al proporcionarle al algoritmo informático una gran cantidad de datos de pruebas cognitivas de cada niño, incluidas las medidas de audición, el razonamiento espacial, la resolución de problemas, el vocabulario y la memoria. Basado en estos datos, el algoritmo sugirió que los niños encajan mejor en cuatro grupos de dificultades. Estos grupos se alinearon estrechamente con otros datos sobre los niños, como los informes de los padres sobre sus dificultades de comunicación y los datos educativos sobre lectura y matemáticas.
Sin embargo, no hubo correspondencia con sus diagnósticos previos. Con el fin de verificar si estas agrupaciones correspondían a diferencias biológicas, los grupos se verificaron en las resonancias magnéticas cerebrales de 184 niños. Las agrupaciones reflejaban patrones de conectividad en partes del cerebro de los niños, lo que sugiere que el aprendizaje automático identificaba diferencias que reflejan en parte la biología subyacente. Dos de los cuatro grupos identificados fueron: dificultades con las habilidades de memoria de trabajo y dificultades con el procesamiento de sonidos en palabras. Los otros dos grupos identificados fueron: niños con amplias dificultades cognitivas en muchas áreas, y niños con resultados de pruebas cognitivas típicas para su edad. Los investigadores notaron que los niños en la agrupación que tenían resultados de pruebas cognitivas que eran típicos para su edad podían tener, en todo caso, otras dificultades que afectaban su escolarización, como las dificultades de comportamiento, que no se habían incluido en el aprendizaje automático.
"Nuestro estudio es el primero de su tipo en aplicar el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades", dijo el Dr. Duncan Astle, de la Unidad de Cognición y Ciencias del Cerebro del MRC en la Universidad de Cambridge, quien dirigió el estudio.
"Estos son hallazgos interesantes en una etapa temprana que comienzan a investigar cómo podemos aplicar nuevas tecnologías, como el aprendizaje automático, para comprender mejor la función cerebral", dijo la Dra. Joanna Latimer, Directora de Neurociencias y Salud Mental del MRC.
Enlace relacionado:
Universidad de Cambridge
Últimas Industria noticias
- Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
- Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
- Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
- Mindray se asocia con TeleRay para optimizar la entrega de ecografías
- Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares
- Siemens y Medtronic forman alianza global para avanzar en tecnologías de imagenología para el cuidado de la columna vertebral
- Exhibiciones técnicas de la RSNA 2024 mostrarán los últimos avances en radiología
- Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico
- Microsoft colabora con sistemas médicos académicos líderes para avanzar en la IA en imágenes médicas
- GE HealthCare adquiere el negocio de inteligencia artificial clínica de Intelligent Ultrasound Group
- Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA
- La empresa polaca de tecnología médica BrainScan planea expandirse extensamente en mercados extranjeros
- Bayer y Google se asocian en un nuevo producto de inteligencia artificial para radiólogos
- Samsung y Bracco firman nuevo acuerdo de tecnología de ultrasonido de diagnóstico
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más