Espectroscopía Raman revela la resistencia tumoral a la radiación
Por el equipo editorial de MedImaging en español Actualizado el 22 Aug 2019 |
Imagen: Un estudio nuevo sugiere que la espectroscopia Raman puede ayudar a identificar la resistencia de un tumor a la RT (Fotografía cortesía de la JHU).
Un estudio nuevo sugiere que la espectroscopia Raman puede identificar diferencias sutiles en el entorno bioquímico de un tumor que se correlacionan con su susceptibilidad a la radioterapia (RT).
Investigadores de la Universidad Johns Hopkins (JHU; Baltimore, MD, EUA) y la Universidad de Arkansas (UARK; Fayetteville, AR, EUA), realizaron un estudio murino para revelar cambios biomoleculares en tumores inducidos por la radiación, y descubrir las diferencias latentes que separan los tumores resistentes a la RT de los sensibles a la RT. Para ello, cultivaron xenoinjertos tumorales en ratones atímicos desnudos y cuantificaron las evaluaciones de tejido espectroscópico Raman en tumores, tanto no tratados como tratados, mediante análisis quimiométrico de las diferencias biomoleculares en el microentorno del tumor.
Encontraron que las mediciones de espectroscopia Raman revelaron diferencias significativas y confiables en el contenido de lípidos y colágeno después de la radiación en el microentorno del tumor, observando cambios consistentemente mayores en los tumores sensibles a la RT. Sobre la base de los hallazgos, crearon un algoritmo para identificar la diferencia entre los tumores resistentes a la RT y los no resistentes, y lo validaron aplicando la técnica Raman a los tumores no tratados. El algoritmo los separó en categorías resistentes y sensibles a la RT con una tasa de éxito del 97%. El estudio fue publicado el 28 de febrero de 2019 en la revista Cancer Research.
“Además de evaluar con exactitud la respuesta tumoral a la terapia, la combinación de marcadores espectrales Raman ofrece potencialmente una ruta para predecir la respuesta en tumores no tratados antes de comenzar el tratamiento”, concluyeron el autor principal, Santosh Paidi, MSc, de la JHU, y colegas. “Combinado con su naturaleza no invasiva, nuestros hallazgos proporcionan una justificación para los estudios in vivo con espectroscopia Raman, con el objetivo final de la traducción clínica para la estratificación del paciente y la adaptación de la radioterapia durante el tratamiento”.
“Este es solo el primer paso de un esfuerzo de investigación más amplio para determinar cómo los tumores de cáncer de cabeza y cuello responden a la radiación”, dijo el ingeniero mecánico y autor principal, Ishan Barman, PhD, de la JHU. “El objetivo final es construir una sonda en miniatura que pueda encajar en un laringoscopio. Esperemos que en el futuro, entonces, cuando un médico realice una endoscopia y observe el tumor canceroso de un paciente, podrá determinar si ese tumor responderá incluso a la radioterapia, y eso puede mejorar los planes de tratamiento”.
La espectroscopia Raman es una forma de espectroscopia molecular basada en la dispersión Raman. Cuando un haz de luz interactúa con un material, parte del haz se transmite, parte se refleja y parte de él se dispersa; más del 99% de la radiación dispersada tiene la misma frecuencia que el haz incidente, pero una pequeña porción de la radiación dispersada tiene frecuencias diferentes a las del haz incidente. La radiación dispersada contiene información sobre los átomos o iones particulares que conforman la molécula, los enlaces químicos que los conectan, la simetría de su estructura molecular y el entorno físico-químico donde residen.
Enlace relacionado:
Universidad Johns Hopkins
Universidad de Arkansas
Investigadores de la Universidad Johns Hopkins (JHU; Baltimore, MD, EUA) y la Universidad de Arkansas (UARK; Fayetteville, AR, EUA), realizaron un estudio murino para revelar cambios biomoleculares en tumores inducidos por la radiación, y descubrir las diferencias latentes que separan los tumores resistentes a la RT de los sensibles a la RT. Para ello, cultivaron xenoinjertos tumorales en ratones atímicos desnudos y cuantificaron las evaluaciones de tejido espectroscópico Raman en tumores, tanto no tratados como tratados, mediante análisis quimiométrico de las diferencias biomoleculares en el microentorno del tumor.
Encontraron que las mediciones de espectroscopia Raman revelaron diferencias significativas y confiables en el contenido de lípidos y colágeno después de la radiación en el microentorno del tumor, observando cambios consistentemente mayores en los tumores sensibles a la RT. Sobre la base de los hallazgos, crearon un algoritmo para identificar la diferencia entre los tumores resistentes a la RT y los no resistentes, y lo validaron aplicando la técnica Raman a los tumores no tratados. El algoritmo los separó en categorías resistentes y sensibles a la RT con una tasa de éxito del 97%. El estudio fue publicado el 28 de febrero de 2019 en la revista Cancer Research.
“Además de evaluar con exactitud la respuesta tumoral a la terapia, la combinación de marcadores espectrales Raman ofrece potencialmente una ruta para predecir la respuesta en tumores no tratados antes de comenzar el tratamiento”, concluyeron el autor principal, Santosh Paidi, MSc, de la JHU, y colegas. “Combinado con su naturaleza no invasiva, nuestros hallazgos proporcionan una justificación para los estudios in vivo con espectroscopia Raman, con el objetivo final de la traducción clínica para la estratificación del paciente y la adaptación de la radioterapia durante el tratamiento”.
“Este es solo el primer paso de un esfuerzo de investigación más amplio para determinar cómo los tumores de cáncer de cabeza y cuello responden a la radiación”, dijo el ingeniero mecánico y autor principal, Ishan Barman, PhD, de la JHU. “El objetivo final es construir una sonda en miniatura que pueda encajar en un laringoscopio. Esperemos que en el futuro, entonces, cuando un médico realice una endoscopia y observe el tumor canceroso de un paciente, podrá determinar si ese tumor responderá incluso a la radioterapia, y eso puede mejorar los planes de tratamiento”.
La espectroscopia Raman es una forma de espectroscopia molecular basada en la dispersión Raman. Cuando un haz de luz interactúa con un material, parte del haz se transmite, parte se refleja y parte de él se dispersa; más del 99% de la radiación dispersada tiene la misma frecuencia que el haz incidente, pero una pequeña porción de la radiación dispersada tiene frecuencias diferentes a las del haz incidente. La radiación dispersada contiene información sobre los átomos o iones particulares que conforman la molécula, los enlaces químicos que los conectan, la simetría de su estructura molecular y el entorno físico-químico donde residen.
Enlace relacionado:
Universidad Johns Hopkins
Universidad de Arkansas
Últimas Medicina Nuclear noticias
- PET utilizando saliva de lagarto puede detectar de manera confiable tumores benignos en el páncreas
- Nuevo radiotrazador podría revolucionar la detección de la enfermedad coronaria
- Algoritmo diagnóstico distingue entre Alzheimer y tauopatía primaria utilizando la PET
- Nueva técnica PET/CT detecta con precisión el neuroblastoma en niños con tiempo de escaneo corto y sin anestesia
- Nueva técnica de imagen permite la detección temprana de infecciones fúngicas
- Nuevo método de imagen detecta de forma no invasiva la enfermedad inflamatoria intestinal
- PET/CT utilizando un nuevo agente trazador podría convertirse en ‘estándar de oro’ para la detección del cáncer de próstata
- Nueva técnica de imagen detecta cánceres agresivos de pulmón y próstata
- La primera exploración PET específica para la tuberculosis conduce a un tratamiento más eficaz
- Nuevo radiotrazador genera imágenes de alta calidad y fácilmente interpretables de la amiloidosis cardíaca.
- Nuevo radiotrazador PET permite obtener imágenes rápidas de un biomarcador clave del cáncer gastrointestinal
- Nuevo biomarcador PET predice el éxito de inmunoterapia con inhibidores de puntos de control
- Nuevo agente PET visualiza de forma rápida y precisa las lesiones en pacientes con carcinoma de células renales de células claras
- Nueva técnica de imagen monitorea trastornos inflamatorios sin exposición a radiación
- Sistema de IA detecta de forma automática y confiable amiloidosis cardíaca mediante imágenes de gammagrafía
- Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar