IA puede mejorar la eficiencia y exactitud de las imágenes del cáncer de mama
Por el equipo editorial de MedImaging en español Actualizado el 19 Aug 2019 |

Imagen: Comparación de la tomosíntesis digital de mama con la mamografía (Fotografía cortesía de Carestream Health).
De acuerdo con un estudio nuevo, la inteligencia artificial (IA) puede ayudar a acortar el tiempo de lectura de la tomosíntesis digital de mama (DBT), a la vez que mantiene o mejora la exactitud.
Investigadores de la Universidad de Pensilvania (UPENN: Filadelfia, PA, EUA), iCAD (Nashua, NH, EUA) y otras instituciones, desarrollaron un sistema de IA de aprendizaje profundo que es capaz de identificar lesiones sospechosas de los tejidos blandos y calcificadas en imágenes de DBT. El sistema fue entrenado en un gran conjunto de datos DBT, y a continuación, se evaluó su desempeño haciendo que 24 radiólogos, incluidos 13 subespecialistas de mama, leyeran, cada uno, 260 exámenes DBT con y sin asistencia de la IA. Los exámenes incluyeron 65 casos de cáncer.
Los resultados revelaron que el desempeño del radiólogo para la detección de lesiones malignas aumentó de 0,795 sin IA a 0,852 con IA, mientras que el tiempo de lectura disminuyó en un 52,7%, de 64,1 segundos sin IA a 30,4 segundos con IA. La sensibilidad aumentó de 77% sin IA a 85% con IA, la especificidad aumentó de 62,7% sin a 69,6% con IA, y la tasa de rellamado, para los no cancerosos, disminuyó de 38% a 30,9% con la IA. El estudio fue publicado el 31 de julio de 2019 en la revista Radiology: Artificial Intelligence.
“En general, los lectores pudieron aumentar su sensibilidad en un ocho por ciento, reducir su tasa de rellamado en un siete por ciento y reducir su tiempo de lectura a la mitad cuando usaban la IA simultáneamente mientras leían casos de DBT”, dijo la autora principal, la profesora Emily Conant, MD, jefa de imágenes mamarias en la UPENN. “El uso simultáneo de la IA con DBT aumenta la detección de cáncer y puede hacer que los tiempos de lectura se reduzcan al tiempo que lleva leer solo la mamografía digital”.
La DBT adquiere múltiples imágenes en un rango angular limitado para producir un conjunto de imágenes reconstruidas, que luego se pueden ver individual o secuencialmente en un bucle de cine, y en una imagen 3D de la mama, que se puede ver en cortes estrechos, similar a las tomografías computarizadas . Mientras que en la mamografía 2D convencional, los tejidos superpuestos pueden enmascarar áreas sospechosas, las imágenes en 3D eliminan la superposición, haciendo que las anomalías sean más fáciles de reconocer. Se estima que la DBT en 3D reemplazará a la mamografía convencional dentro de diez años.
Enlace relacionado:
Universidad de Pensilvania
iCAD
Investigadores de la Universidad de Pensilvania (UPENN: Filadelfia, PA, EUA), iCAD (Nashua, NH, EUA) y otras instituciones, desarrollaron un sistema de IA de aprendizaje profundo que es capaz de identificar lesiones sospechosas de los tejidos blandos y calcificadas en imágenes de DBT. El sistema fue entrenado en un gran conjunto de datos DBT, y a continuación, se evaluó su desempeño haciendo que 24 radiólogos, incluidos 13 subespecialistas de mama, leyeran, cada uno, 260 exámenes DBT con y sin asistencia de la IA. Los exámenes incluyeron 65 casos de cáncer.
Los resultados revelaron que el desempeño del radiólogo para la detección de lesiones malignas aumentó de 0,795 sin IA a 0,852 con IA, mientras que el tiempo de lectura disminuyó en un 52,7%, de 64,1 segundos sin IA a 30,4 segundos con IA. La sensibilidad aumentó de 77% sin IA a 85% con IA, la especificidad aumentó de 62,7% sin a 69,6% con IA, y la tasa de rellamado, para los no cancerosos, disminuyó de 38% a 30,9% con la IA. El estudio fue publicado el 31 de julio de 2019 en la revista Radiology: Artificial Intelligence.
“En general, los lectores pudieron aumentar su sensibilidad en un ocho por ciento, reducir su tasa de rellamado en un siete por ciento y reducir su tiempo de lectura a la mitad cuando usaban la IA simultáneamente mientras leían casos de DBT”, dijo la autora principal, la profesora Emily Conant, MD, jefa de imágenes mamarias en la UPENN. “El uso simultáneo de la IA con DBT aumenta la detección de cáncer y puede hacer que los tiempos de lectura se reduzcan al tiempo que lleva leer solo la mamografía digital”.
La DBT adquiere múltiples imágenes en un rango angular limitado para producir un conjunto de imágenes reconstruidas, que luego se pueden ver individual o secuencialmente en un bucle de cine, y en una imagen 3D de la mama, que se puede ver en cortes estrechos, similar a las tomografías computarizadas . Mientras que en la mamografía 2D convencional, los tejidos superpuestos pueden enmascarar áreas sospechosas, las imágenes en 3D eliminan la superposición, haciendo que las anomalías sean más fáciles de reconocer. Se estima que la DBT en 3D reemplazará a la mamografía convencional dentro de diez años.
Enlace relacionado:
Universidad de Pensilvania
iCAD
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más