Algoritmo de aprendizaje automático diagnostica el cáncer antes y con exactitud
Por el equipo editorial de MedImaging en español Actualizado el 03 Sep 2019 |

Imagen: Los investigadores utilizaron imágenes sintéticas para entrenar un algoritmo de aprendizaje automático que puede ayudar a detectar el cáncer de mama de manera más rápida y correcta (Fotografía cortesía de la Universidad del Sur de California).
Un equipo de investigadores de la Universidad del Sur de California (Los Ángeles, CA, EUA) utilizó imágenes sintéticas para entrenar un algoritmo de aprendizaje automático que puede ayudar a detectar el cáncer de mama de manera más rápida y correcta. Los investigadores primero crearon modelos basados en la física que mostraban niveles variables de propiedades clave y luego usaron miles de entradas de datos derivados de esos modelos para entrenar el algoritmo de aprendizaje automático. Este tipo de técnicas se vuelven importantes en situaciones donde los datos son escasos, como en el caso de las imágenes médicas.
Los investigadores utilizaron unas 12.000 imágenes sintéticas para entrenar el algoritmo de aprendizaje automático. Al proporcionar suficientes ejemplos, el algoritmo puede obtener diferentes características inherentes a un tumor benigno versus un tumor maligno y hacer la determinación correcta. Después de lograr una exactitud de clasificación de casi el 100% en otras imágenes sintéticas, los investigadores probaron el algoritmo en imágenes del mundo real para determinar su exactitud en proporcionar un diagnóstico y midieron los resultados contra los diagnósticos confirmados por biopsia asociados con esas imágenes. El algoritmo de aprendizaje automático logró una tasa de exactitud de aproximadamente el 80% y ahora se refina aún más mediante el uso de más imágenes del mundo real como entradas.
Con base en los principios utilizados para entrenar el algoritmo de aprendizaje automático para el diagnóstico de cáncer de mama, los investigadores ahora buscan entrenar el algoritmo para diagnosticar mejor el cáncer renal a través de imágenes de TC con contraste. Los investigadores creen que es poco probable que los algoritmos de aprendizaje automático reemplacen el papel de un radiólogo en la determinación del diagnóstico, pero sí podrán servir como una herramienta para guiar a los radiólogos a llegar a conclusiones más exactas.
“El consenso general es que estos tipos de algoritmos tienen un papel importante que desempeñar, incluso de los profesionales de la imagenología a los que impactará más. Sin embargo, estos algoritmos serán más útiles cuando no sirven como cajas negras”, dijo Assad Oberai, profesor de Hughes en el Departamento de Ingeniería Aeroespacial y Mecánica de la Escuela de Ingeniería Viterbi de la USC. “¿Qué fue lo que vio que lo llevó a la conclusión final? El algoritmo debe ser explicable para que funcione según lo previsto”.
Enlace relacionado:
Universidad del Sur de California
Los investigadores utilizaron unas 12.000 imágenes sintéticas para entrenar el algoritmo de aprendizaje automático. Al proporcionar suficientes ejemplos, el algoritmo puede obtener diferentes características inherentes a un tumor benigno versus un tumor maligno y hacer la determinación correcta. Después de lograr una exactitud de clasificación de casi el 100% en otras imágenes sintéticas, los investigadores probaron el algoritmo en imágenes del mundo real para determinar su exactitud en proporcionar un diagnóstico y midieron los resultados contra los diagnósticos confirmados por biopsia asociados con esas imágenes. El algoritmo de aprendizaje automático logró una tasa de exactitud de aproximadamente el 80% y ahora se refina aún más mediante el uso de más imágenes del mundo real como entradas.
Con base en los principios utilizados para entrenar el algoritmo de aprendizaje automático para el diagnóstico de cáncer de mama, los investigadores ahora buscan entrenar el algoritmo para diagnosticar mejor el cáncer renal a través de imágenes de TC con contraste. Los investigadores creen que es poco probable que los algoritmos de aprendizaje automático reemplacen el papel de un radiólogo en la determinación del diagnóstico, pero sí podrán servir como una herramienta para guiar a los radiólogos a llegar a conclusiones más exactas.
“El consenso general es que estos tipos de algoritmos tienen un papel importante que desempeñar, incluso de los profesionales de la imagenología a los que impactará más. Sin embargo, estos algoritmos serán más útiles cuando no sirven como cajas negras”, dijo Assad Oberai, profesor de Hughes en el Departamento de Ingeniería Aeroespacial y Mecánica de la Escuela de Ingeniería Viterbi de la USC. “¿Qué fue lo que vio que lo llevó a la conclusión final? El algoritmo debe ser explicable para que funcione según lo previsto”.
Enlace relacionado:
Universidad del Sur de California
Últimas Industria noticias
- Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
- Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
- Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
- Mindray se asocia con TeleRay para optimizar la entrega de ecografías
- Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares
- Siemens y Medtronic forman alianza global para avanzar en tecnologías de imagenología para el cuidado de la columna vertebral
- Exhibiciones técnicas de la RSNA 2024 mostrarán los últimos avances en radiología
- Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico
- Microsoft colabora con sistemas médicos académicos líderes para avanzar en la IA en imágenes médicas
- GE HealthCare adquiere el negocio de inteligencia artificial clínica de Intelligent Ultrasound Group
- Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA
- La empresa polaca de tecnología médica BrainScan planea expandirse extensamente en mercados extranjeros
- Bayer y Google se asocian en un nuevo producto de inteligencia artificial para radiólogos
- Samsung y Bracco firman nuevo acuerdo de tecnología de ultrasonido de diagnóstico
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
Canales
Radiografía
ver canal
Algoritmo de aprendizaje automático identifica riesgo cardiovascular a partir de escaneos ósea de rutina
Un nuevo estudio publicado en el Journal of Bone and Mineral Research revela que un programa automatizado de aprendizaje automático puede predecir el riesgo de eventos cardiovasculares y caídas... Más
La IA mejora la detección temprana de los cánceres de mama de intervalo
Los cánceres de mama de intervalo, que aparecen entre mamografías de rutina, son más tratables cuando se detectan a tiempo. La detección temprana puede reducir la necesidad... MásRM
ver canal
Examen de resonancia magnética más corto detecta eficazmente el cáncer en mamas densas
Las mujeres con mamas extremadamente densas se enfrentan a un mayor riesgo de no recibir un diagnóstico de cáncer de mama, ya que el tejido glandular y fibroso denso puede ocultar los tumores... Más
La resonancia magnética reemplazará la dolorosa punción lumbar para un diagnóstico más rápido de la EM
La esclerosis múltiple (EM) es una enfermedad neurológica difícil de diagnosticar debido a su amplia gama de síntomas. No todos los pacientes experimentan los mismos síntomas... MásUltrasonido
ver canal
Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes
Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata
El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más
Nuevo anticuerpo radiomarcado mejora el diagnóstico y tratamiento de tumores sólidos
El receptor de interleucina-13 α-2 (IL13Rα2) es un receptor de superficie celular que se encuentra comúnmente en tumores sólidos como el glioblastoma, el melanoma y el cáncer... MásImaginología General
ver canal
Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más
Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
La terapia con radioligandos, una forma de medicina nuclear dirigida, ha cobrado relevancia recientemente por su potencial en el tratamiento de tipos específicos de tumores. Sin embargo, uno de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más