IA e imagenología ayudan en el diagnóstico intraoperatorio de tumores cerebrales
Por el equipo editorial de MedImaging en español Actualizado el 22 Jan 2020 |

Imagen: Localización de infiltración de tumor cerebral metastásico en imágenes de SRH (Fotografía cortesía del MGH)
Según un estudio nuevo, un flujo de trabajo que combina imágenes ópticas avanzadas con un algoritmo de inteligencia artificial (IA) puede diagnosticar con exactitud los tumores cerebrales en tiempo real en la sala de operaciones.
Desarrollado en la Universidad de California, San Francisco (UCSF; EUA), la Universidad de Michigan (UM; Ann Arbor, EUA), la Universidad de Columbia (Nueva York, NY, EUA) y otras instituciones, el novedoso flujo de trabajo paralelo combina la histología Raman estimulada (SRH, un método de imagen óptica sin etiquetas) y las redes neuronales convolucionales profundas (CNN) para predecir el diagnóstico en tiempo casi real de manera automatizada. Las CNN, que fueron entrenadas con más de 2,5 millones de imágenes de SRH, construyeron una jerarquía de representaciones de características histológicas reconocibles para ayudar a clasificar las principales clases histopatológicas de tumores cerebrales.
El nuevo flujo de trabajo puede diagnosticar los tumores cerebrales en menos de 150 segundos, un orden de magnitud más rápido que las técnicas de histología convencionales, que demoran entre 20 y 30 minutos. Los autores también probaron prospectivamente el flujo de trabajo en un ensayo clínico de 278 pacientes con tumores cerebrales, que demostró que la exactitud del diagnóstico basado en CNN de las imágenes de SRH (94,6%) fue ligeramente mayor que la interpretación por el patólogo de las imágenes histológicas convencionales (93,9% ) El estudio fue publicado el 6 de enero de 2020 en la revista Nature Medicine.
“Como cirujanos, estamos limitados a actuar sobre lo que podemos ver; esta tecnología nos permite ver lo que de otra manera sería invisible, para mejorar la velocidad y la exactitud en la sala de operaciones, y reducir el riesgo de diagnósticos erróneos”, concluyeron el autor principal, Todd Hollon, MD, de la UM, y sus colegas. “Se puede simplificar el diagnóstico de cáncer intraoperatorio creando una vía complementaria para el diagnóstico de tejidos que es independiente del laboratorio de patología tradicional. Con esta tecnología de imagenología, las operaciones de cáncer son más seguras y efectivas que nunca”.
Enlace relacionado:
Universidad de California, San Francisco
Universidad de Michigan
Universidad de Columbia
Desarrollado en la Universidad de California, San Francisco (UCSF; EUA), la Universidad de Michigan (UM; Ann Arbor, EUA), la Universidad de Columbia (Nueva York, NY, EUA) y otras instituciones, el novedoso flujo de trabajo paralelo combina la histología Raman estimulada (SRH, un método de imagen óptica sin etiquetas) y las redes neuronales convolucionales profundas (CNN) para predecir el diagnóstico en tiempo casi real de manera automatizada. Las CNN, que fueron entrenadas con más de 2,5 millones de imágenes de SRH, construyeron una jerarquía de representaciones de características histológicas reconocibles para ayudar a clasificar las principales clases histopatológicas de tumores cerebrales.
El nuevo flujo de trabajo puede diagnosticar los tumores cerebrales en menos de 150 segundos, un orden de magnitud más rápido que las técnicas de histología convencionales, que demoran entre 20 y 30 minutos. Los autores también probaron prospectivamente el flujo de trabajo en un ensayo clínico de 278 pacientes con tumores cerebrales, que demostró que la exactitud del diagnóstico basado en CNN de las imágenes de SRH (94,6%) fue ligeramente mayor que la interpretación por el patólogo de las imágenes histológicas convencionales (93,9% ) El estudio fue publicado el 6 de enero de 2020 en la revista Nature Medicine.
“Como cirujanos, estamos limitados a actuar sobre lo que podemos ver; esta tecnología nos permite ver lo que de otra manera sería invisible, para mejorar la velocidad y la exactitud en la sala de operaciones, y reducir el riesgo de diagnósticos erróneos”, concluyeron el autor principal, Todd Hollon, MD, de la UM, y sus colegas. “Se puede simplificar el diagnóstico de cáncer intraoperatorio creando una vía complementaria para el diagnóstico de tejidos que es independiente del laboratorio de patología tradicional. Con esta tecnología de imagenología, las operaciones de cáncer son más seguras y efectivas que nunca”.
Enlace relacionado:
Universidad de California, San Francisco
Universidad de Michigan
Universidad de Columbia
Últimas Imaginología General noticias
- Avanzada solución de angio-TC ofrece nuevas posibilidades terapéuticas
- La ampliación de TC detecta coágulos sanguíneos ocultos en pacientes con ictus
- Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas
- Nuevo indicador basado en TC ayuda a predecir hemorragia posparto potencialmente mortal
- La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon
- Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
- Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
- Herramienta basada en aprendizaje profundo mejora el diagnóstico del cáncer de hígado
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
Canales
Radiografía
ver canal
Estrategia híbrida con IA mejora la interpretación de mamografías
Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más
IA predice riesgo personalizado de desarrollar cáncer de mama a cinco años
El cáncer de mama sigue siendo uno de los cánceres más comunes entre las mujeres, y aproximadamente una de cada ocho recibe un diagnóstico a lo largo de su vida. A pesar del uso generalizado de la mamografía,... MásRM
ver canal
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... Más
Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco
La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... MásUltrasonido
ver canal
Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil
La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más
Avance en modelo de aprendizaje profundo mejora las imágenes médicas 3D con dispositivos portátiles
La ecografía es una técnica diagnóstica vital que permite visualizar órganos y tejidos internos en tiempo real, además de guiar procedimientos como biopsias e inyecciones.... Más
Sistema de imágenes mamarias indoloro puede realizar una exploración del cáncer en un minuto
El cáncer de mama es una de las principales causas de muerte en mujeres a nivel mundial, y la detección temprana es clave para mejorar los resultados. Los métodos tradicionales, como la mamografía y el... Más
Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía
El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... MásMedicina Nuclear
ver canal
Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico
Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más
Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar
Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más