IA e imagenología ayudan en el diagnóstico intraoperatorio de tumores cerebrales
|
Por el equipo editorial de MedImaging en español Actualizado el 22 Jan 2020 |

Imagen: Localización de infiltración de tumor cerebral metastásico en imágenes de SRH (Fotografía cortesía del MGH)
Según un estudio nuevo, un flujo de trabajo que combina imágenes ópticas avanzadas con un algoritmo de inteligencia artificial (IA) puede diagnosticar con exactitud los tumores cerebrales en tiempo real en la sala de operaciones.
Desarrollado en la Universidad de California, San Francisco (UCSF; EUA), la Universidad de Michigan (UM; Ann Arbor, EUA), la Universidad de Columbia (Nueva York, NY, EUA) y otras instituciones, el novedoso flujo de trabajo paralelo combina la histología Raman estimulada (SRH, un método de imagen óptica sin etiquetas) y las redes neuronales convolucionales profundas (CNN) para predecir el diagnóstico en tiempo casi real de manera automatizada. Las CNN, que fueron entrenadas con más de 2,5 millones de imágenes de SRH, construyeron una jerarquía de representaciones de características histológicas reconocibles para ayudar a clasificar las principales clases histopatológicas de tumores cerebrales.
El nuevo flujo de trabajo puede diagnosticar los tumores cerebrales en menos de 150 segundos, un orden de magnitud más rápido que las técnicas de histología convencionales, que demoran entre 20 y 30 minutos. Los autores también probaron prospectivamente el flujo de trabajo en un ensayo clínico de 278 pacientes con tumores cerebrales, que demostró que la exactitud del diagnóstico basado en CNN de las imágenes de SRH (94,6%) fue ligeramente mayor que la interpretación por el patólogo de las imágenes histológicas convencionales (93,9% ) El estudio fue publicado el 6 de enero de 2020 en la revista Nature Medicine.
“Como cirujanos, estamos limitados a actuar sobre lo que podemos ver; esta tecnología nos permite ver lo que de otra manera sería invisible, para mejorar la velocidad y la exactitud en la sala de operaciones, y reducir el riesgo de diagnósticos erróneos”, concluyeron el autor principal, Todd Hollon, MD, de la UM, y sus colegas. “Se puede simplificar el diagnóstico de cáncer intraoperatorio creando una vía complementaria para el diagnóstico de tejidos que es independiente del laboratorio de patología tradicional. Con esta tecnología de imagenología, las operaciones de cáncer son más seguras y efectivas que nunca”.
Enlace relacionado:
Universidad de California, San Francisco
Universidad de Michigan
Universidad de Columbia
Desarrollado en la Universidad de California, San Francisco (UCSF; EUA), la Universidad de Michigan (UM; Ann Arbor, EUA), la Universidad de Columbia (Nueva York, NY, EUA) y otras instituciones, el novedoso flujo de trabajo paralelo combina la histología Raman estimulada (SRH, un método de imagen óptica sin etiquetas) y las redes neuronales convolucionales profundas (CNN) para predecir el diagnóstico en tiempo casi real de manera automatizada. Las CNN, que fueron entrenadas con más de 2,5 millones de imágenes de SRH, construyeron una jerarquía de representaciones de características histológicas reconocibles para ayudar a clasificar las principales clases histopatológicas de tumores cerebrales.
El nuevo flujo de trabajo puede diagnosticar los tumores cerebrales en menos de 150 segundos, un orden de magnitud más rápido que las técnicas de histología convencionales, que demoran entre 20 y 30 minutos. Los autores también probaron prospectivamente el flujo de trabajo en un ensayo clínico de 278 pacientes con tumores cerebrales, que demostró que la exactitud del diagnóstico basado en CNN de las imágenes de SRH (94,6%) fue ligeramente mayor que la interpretación por el patólogo de las imágenes histológicas convencionales (93,9% ) El estudio fue publicado el 6 de enero de 2020 en la revista Nature Medicine.
“Como cirujanos, estamos limitados a actuar sobre lo que podemos ver; esta tecnología nos permite ver lo que de otra manera sería invisible, para mejorar la velocidad y la exactitud en la sala de operaciones, y reducir el riesgo de diagnósticos erróneos”, concluyeron el autor principal, Todd Hollon, MD, de la UM, y sus colegas. “Se puede simplificar el diagnóstico de cáncer intraoperatorio creando una vía complementaria para el diagnóstico de tejidos que es independiente del laboratorio de patología tradicional. Con esta tecnología de imagenología, las operaciones de cáncer son más seguras y efectivas que nunca”.
Enlace relacionado:
Universidad de California, San Francisco
Universidad de Michigan
Universidad de Columbia
Últimas Imaginología General noticias
- Enfoque de escaneo 3D permite una cirugía cerebral ultraprecisa
- Herramienta de IA mejora el proceso de imágenes médicas en un 90%
- Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste
- Algoritmo de IA predice con precisión la metástasis del cáncer de páncreas mediante imágenes rutinarias de TC
- Avanzada solución de angio-TC ofrece nuevas posibilidades terapéuticas
- La ampliación de TC detecta coágulos sanguíneos ocultos en pacientes con ictus
- Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas
- Nuevo indicador basado en TC ayuda a predecir hemorragia posparto potencialmente mortal
- La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon
- Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
- Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
- Herramienta basada en aprendizaje profundo mejora el diagnóstico del cáncer de hígado
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
Canales
Radiografía
ver canal
Avance en rayos X captura tres tipos de contraste de imagen en una sola toma
La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más
La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis
La osteoartritis, una enfermedad articular degenerativa que afecta a más de 500 millones de personas en todo el mundo, es la principal causa de discapacidad en adultos mayores. Las herramientas... Más
Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres
Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... MásRM
ver canal
Nuevo enfoque de imagen para mejorar el tratamiento de lesiones de la médula espinal
La disfunción vascular en la médula espinal contribuye a múltiples afecciones neurológicas, como lesiones traumáticas y mielopatía cervical degenerativa, donde... Más
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... MásUltrasonido
ver canal
Sistema de ultrasonido portátil permitirá la monitorización de enfermedades en tiempo real
Las enfermedades crónicas como la hipertensión y la insuficiencia cardíaca requieren una monitorización estrecha; sin embargo, en la actualidad la obtención de imágenes... Más
Técnica de ultrasonido visualiza vasos sanguíneos profundos en 3D sin agentes de contraste
La producción de imágenes 3D nítidas de vasos sanguíneos profundos ha sido difícil durante mucho tiempo sin recurrir a medios de contraste, tomografías computarizadas... MásMedicina Nuclear
ver canal
Las imágenes PET de la inflamación predicen la recuperación y guían la terapia tras un infarto cardíaco
El infarto agudo de miocardio puede provocar daño cardíaco permanente; sin embargo, los médicos aún carecen de herramientas fiables para identificar qué pacientes re... Más
Un enfoque radioteranóstico detecta, elimina y reprograma cánceres agresivos
Los cánceres agresivos como el osteosarcoma y el glioblastoma suelen resistir las terapias estándar, prosperar en entornos tumorales hostiles y reaparecer a pesar de la cirugía, la... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más







