Análisis mediante IA de las TC del tórax permite diferenciar la COVID-19 de la neumonía
Por el equipo editorial de MedImaging en español Actualizado el 31 Mar 2020 |

Imagen: Mapas de calor de las regiones de activación de COVID-19 (Fotografía cortesía del Hospital del Pueblo Wuhan Huangpi)
Según un estudio nuevo, un modelo de aprendizaje profundo de inteligencia artificial (IA) puede detectar con exactitud la COVID-19 y diferenciarla de la neumonía adquirida en la comunidad (NAC) y otras enfermedades pulmonares.
Investigadores del Hospital Popular Wuhan Huangpi (China), el Centro de Ciencias de la Salud de la Universidad de Shenzhen (Shenzhen, China) y otras instituciones, realizaron un estudio retrospectivo multicéntrico para desarrollar la red neuronal de detección de COVID-19 (COVNet), un marco de IA completamente automático que extrae características visuales de los exámenes volumétricos de TC de tórax para la detección de la COVID-19, y los diferencia de la NAC y otros hallazgos pulmonares. Se recopilaron conjuntos de datos de seis hospitales y se evaluó el desempeño diagnóstico.
En total, el conjunto de datos recopilados consistió en 4.356 exámenes volumétricos de TC de tórax de 3.322 pacientes (edad promedio 49 años, 55% hombres). La sensibilidad y especificidad general por examen para detectar COVID-19 en el conjunto de pruebas independientes fue del 90% y 96%, respectivamente. Los investigadores también mostraron que la sensibilidad y especificidad por examen para detectar la NAC fue del 87% y 92%, respectivamente. El estudio fue publicado el 19 de marzo de 2020 en la revista Radiology.
“Pudimos recolectar una gran cantidad de exámenes de tomografía computarizada de múltiples hospitales, que incluyeron 1.296 exámenes de tomografía computarizada de pacientes con COVID-19”, concluyó el autor principal, Lin Li, MD, del departamento de radiología del Hospital del Pueblo de Wuhan Huangpi. “Más importante aún, también se recolectaron exámenes de TC de 1.735 pacientes con NAC y de 1.325 pacientes sin neumonía como los grupos de control en este estudio con el fin de garantizar la robustez de la detección, teniendo en cuenta que se pueden observar ciertas características de imágenes similares en la COVID-19 y otros tipos de enfermedades pulmonares”.
El brote de la enfermedad por coronavirus 2019 (COVID-19) se ha extendido rápidamente por todo el mundo. El 30 de enero de 2020, la Organización Mundial de la Salud (OMS) la declaró una emergencia de salud pública de interés internacional. Por lo general, se confirma mediante la reacción en cadena de la polimerasa de transcripción inversa (PCR), pero la TC puede detectar ciertas manifestaciones características en el pulmón asociadas con COVID-19, como vidrio esmerilado bilateral, opacidades pulmonares consolidadas en la TC y un patrón de pavimentación loco, entre otros.
Enlace relacionado:
Centro de Ciencias de la Salud de la Universidad de Shenzhen
Investigadores del Hospital Popular Wuhan Huangpi (China), el Centro de Ciencias de la Salud de la Universidad de Shenzhen (Shenzhen, China) y otras instituciones, realizaron un estudio retrospectivo multicéntrico para desarrollar la red neuronal de detección de COVID-19 (COVNet), un marco de IA completamente automático que extrae características visuales de los exámenes volumétricos de TC de tórax para la detección de la COVID-19, y los diferencia de la NAC y otros hallazgos pulmonares. Se recopilaron conjuntos de datos de seis hospitales y se evaluó el desempeño diagnóstico.
En total, el conjunto de datos recopilados consistió en 4.356 exámenes volumétricos de TC de tórax de 3.322 pacientes (edad promedio 49 años, 55% hombres). La sensibilidad y especificidad general por examen para detectar COVID-19 en el conjunto de pruebas independientes fue del 90% y 96%, respectivamente. Los investigadores también mostraron que la sensibilidad y especificidad por examen para detectar la NAC fue del 87% y 92%, respectivamente. El estudio fue publicado el 19 de marzo de 2020 en la revista Radiology.
“Pudimos recolectar una gran cantidad de exámenes de tomografía computarizada de múltiples hospitales, que incluyeron 1.296 exámenes de tomografía computarizada de pacientes con COVID-19”, concluyó el autor principal, Lin Li, MD, del departamento de radiología del Hospital del Pueblo de Wuhan Huangpi. “Más importante aún, también se recolectaron exámenes de TC de 1.735 pacientes con NAC y de 1.325 pacientes sin neumonía como los grupos de control en este estudio con el fin de garantizar la robustez de la detección, teniendo en cuenta que se pueden observar ciertas características de imágenes similares en la COVID-19 y otros tipos de enfermedades pulmonares”.
El brote de la enfermedad por coronavirus 2019 (COVID-19) se ha extendido rápidamente por todo el mundo. El 30 de enero de 2020, la Organización Mundial de la Salud (OMS) la declaró una emergencia de salud pública de interés internacional. Por lo general, se confirma mediante la reacción en cadena de la polimerasa de transcripción inversa (PCR), pero la TC puede detectar ciertas manifestaciones características en el pulmón asociadas con COVID-19, como vidrio esmerilado bilateral, opacidades pulmonares consolidadas en la TC y un patrón de pavimentación loco, entre otros.
Enlace relacionado:
Centro de Ciencias de la Salud de la Universidad de Shenzhen
Últimas Imaginología General noticias
- Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
- Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
- Herramienta basada en aprendizaje profundo mejora el diagnóstico del cáncer de hígado
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
Canales
Radiografía
ver canal
Algoritmo de aprendizaje automático identifica riesgo cardiovascular a partir de escaneos ósea de rutina
Un nuevo estudio publicado en el Journal of Bone and Mineral Research revela que un programa automatizado de aprendizaje automático puede predecir el riesgo de eventos cardiovasculares y caídas... Más
La IA mejora la detección temprana de los cánceres de mama de intervalo
Los cánceres de mama de intervalo, que aparecen entre mamografías de rutina, son más tratables cuando se detectan a tiempo. La detección temprana puede reducir la necesidad... MásRM
ver canal
La resonancia magnética reemplazará la dolorosa punción lumbar para un diagnóstico más rápido de la EM
La esclerosis múltiple (EM) es una enfermedad neurológica difícil de diagnosticar debido a su amplia gama de síntomas. No todos los pacientes experimentan los mismos síntomas... Más
Resonancias magnéticas identifican enfermedades cardiovasculares con diez años de antelación
Las enfermedades cardiovasculares abarcan diversas afecciones que estrechan u obstruyen los vasos sanguíneos, como infartos, accidentes cerebrovasculares e insuficiencia cardíaca.... MásUltrasonido
ver canal
Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes
Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata
El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más
Nuevo anticuerpo radiomarcado mejora el diagnóstico y tratamiento de tumores sólidos
El receptor de interleucina-13 α-2 (IL13Rα2) es un receptor de superficie celular que se encuentra comúnmente en tumores sólidos como el glioblastoma, el melanoma y el cáncer... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más