Nuevos marcadores de imágenes cuantitativos podrían mejorar detección, diagnóstico y tratamiento del cáncer
Por el equipo editorial de MedImaging en español Actualizado el 24 Mar 2022 |

Las imágenes médicas son una herramienta esencial para ayudar a los médicos y científicos a evaluar el tamaño y el alcance de un tumor que se extirpará de manera efectiva mediante cirugía, así como la velocidad a la que los tumores se reducen en respuesta a intervenciones médicas como la quimioterapia o la radioterapia. Los investigadores ahora están investigando múltiples vías, incluido el desarrollo de marcadores cuantitativos de imágenes, para ayudar a mejorar el uso de imágenes médicas en la detección, el diagnóstico y el tratamiento del cáncer.
Los investigadores del Centro de Imágenes Médicas para la Investigación Traslacional del Cáncer de Oklahoma (Norman, OK, EUA) están desarrollando marcadores cuantitativos de imágenes para proporcionar una medida o índice objetivo que pueda reducir la subjetividad y mejorar la consistencia para el diagnóstico de imágenes médicas utilizando dos tipos principales de enfoques de investigación. El primer enfoque es desarrollar nuevas modalidades de imágenes de investigación de vanguardia para ampliar la capacidad de los médicos para ver o detectar estructuras internas del tumor más detalladas, como el uso de tecnologías y modalidades de imágenes ópticas avanzadas. El segundo es explorar y extraer características de imagen más efectivas de las modalidades de imágenes clínicas existentes, como imágenes de tomografía computarizada, resonancia magnética y rayos X, y luego usar inteligencia artificial o modelos de aprendizaje automático para desarrollar nuevos marcadores cuantitativos de imágenes para ayudar a reducir la subjetividad y la variabilidad del diagnóstico de cáncer y predicción del pronóstico del cáncer.
El centro está comenzando con cuatro proyectos actualmente en marcha. En el primer proyecto, los investigadores están utilizando modalidades de imágenes mejoradas y marcadores cuantitativos para definir más claramente el margen de un tumor para mejorar los resultados de los pacientes. El segundo proyecto se centrará en el desarrollo de un microscopio óptico 3D de superresolución como método novedoso y único que permite a los investigadores comprender mejor las vías intracelulares que siguen las nanopartículas durante la transcitosis para tratar tumores. El centro apoyará la compra de un microscopio óptico 3D de súper resolución para permitir a los investigadores estudiar mejor la nanomedicina, una rama de la medicina que fusiona la nanotecnología y la medicina para el tratamiento y la prevención del cáncer. El microscopio de alta potencia mejorará la investigación en esta área.
El tercer proyecto tiene como objetivo utilizar la inteligencia artificial y el aprendizaje automático con imágenes de TC actuales y datos de patología para desarrollar un modelo que pueda informar el establecimiento de marcadores de imágenes que puedan reducir la subjetividad y la variabilidad de los resultados de las imágenes y mejorar el tratamiento del paciente. El cuarto proyecto tiene como objetivo utilizar nuevos métodos de imagen de investigación, tomografía de coherencia óptica y tomografía de coherencia óptica de campo completo para probar un fármaco exploratorio contra el cáncer. Estudios anteriores han demostrado que un medicamento antiparasitario puede tener el potencial para tratar ciertas formas de cáncer, incluido el cáncer de ovario, pero se necesita más investigación para que los científicos comprendan mejor sus efectos.
“Cuando algunos pacientes se someten a tratamientos contra el cáncer, algunos responderán favorablemente mientras que otros no. El tumor sigue creciendo, por lo que si podemos desarrollar un marcador de imágenes cuantitativas para predecir la probabilidad de que un paciente responda a cierto tipo de quimioterapia o tratamiento, podemos ayudar a los médicos a explorar un enfoque alternativo que puede ser más efectivo”, dijo Bin Zheng, Ph.D., profesor y becario de investigación del cáncer TSET de Oklahoma en la Escuela de Ingeniería Eléctrica e Informática de la Facultad de Ingeniería Gallogly, dirige el centro.
“Proponemos desarrollar un nuevo enfoque para identificar nuevos marcadores de imagen cuantitativos computados a partir de tres tipos de datos de neuroimagen utilizando inteligencia artificial, lo que nos permite definir más claramente el margen del tumor, predecir la recuperación de los déficits neurológicos y, por lo tanto, ayudar a mejorar los efectos de la cirugía y la supervivencia de los pacientes”, dijo Han Yuan, Ph.D., profesora asociada en la Escuela de Ingeniería Biomédica Stephenson en OU Norman, quien dirige el proyecto, “Marcadores de neuroimagen para predecir el resultado de la cirugía cerebral”.
Enlaces relacionados:
Centro de Imágenes Médicas para la Investigación Traslacional del Cáncer de Oklahoma
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más