MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Herramienta de IA garantiza seguimiento de hallazgos radiográficos para evitar retrasos en diagnóstico

Por el equipo editorial de MedImaging en español
Actualizado el 06 Apr 2022
Print article
Imagen: El uso de la IA y el aprendizaje automático puede mejorar los resultados de los pacientes (Fotografía cortesía de Pexels)
Imagen: El uso de la IA y el aprendizaje automático puede mejorar los resultados de los pacientes (Fotografía cortesía de Pexels)

Se revisan las imágenes de diagnóstico médico de modalidades como radiografías, tomografías computarizadas y resonancias magnéticas, y los hallazgos se resumen en un informe de radiología que puede contener recomendaciones para acciones de seguimiento, como pruebas y evaluaciones adicionales. Debido a la extensión y la complejidad de este tipo de informes, hasta el 33 % de las recomendaciones de seguimiento se retrasan o se pasan por alto involuntariamente, lo que puede conducir a malos resultados para los pacientes. Para resolver este problema, los investigadores han desarrollado un flujo de trabajo de IA personalizado para acelerar el procesamiento de informes de radiología y proporcionar un seguimiento crucial del paciente.

El equipo de investigadores de la Facultad de Medicina Feinberg de la Universidad Northwestern (Evanston, IL, EUA) desarrolló una iniciativa para garantizar un seguimiento confiable de los hallazgos radiográficos para prevenir retrasos en el diagnóstico y el tratamiento y mejorar los resultados. El equipo desarrolló un flujo de trabajo de IA basado en redes neuronales recurrentes y procesamiento de lenguaje natural (NLP) para examinar e identificar informes de radiología con hallazgos que requieren un seguimiento médico adicional.

En un estudio realizado por los investigadores, su flujo de trabajo de IA personalizado evaluó más de 570.000 estudios de imágenes en 13 meses y encontró que 29.000 (5,1 % del total) contenían recomendaciones de seguimiento relacionadas con los pulmones, a una tasa promedio de 70 hallazgos marcados por día. Los resultados demostraron una sensibilidad del 77,1 %, una especificidad del 99,5 % y una precisión del 90,3 % para el seguimiento de los hallazgos pulmonares. Se generaron cerca de 5.000 interacciones con los médicos y se completaron más de 2.400 seguimientos. Los investigadores concluyeron que la IA y los procesos de aprendizaje automático mejoran la confiabilidad de los hallazgos de imágenes médicas, lo que puede conducir a una reducción y prevención efectivas de enfermedades de alto riesgo.

“Creamos nuestro propio flujo de trabajo de IA personalizado que lee casi todos los informes de radiología y, a través de una integración profunda con nuestro sistema de registros médicos, proporciona alertas y notificaciones al médico de atención primaria, al paciente y al equipo de seguimiento dedicado, para garantizar que los detalles importantes no caigan en el olvido”, dijo Mozziyar Etemadi, MD, PhD, de la Universidad Northwestern. Estamos entusiasmados con el futuro de la atención médica, la inteligencia artificial y todas las formas en que podemos continuar ayudando a nuestros pacientes”.


Enlaces relacionados:
Facultad de Medicina Feinberg de la Universidad Northwestern

X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultrasound Imaging System
P12 Elite
New
Cylindrical Water Scanning System
SunSCAN 3D
NMUS & MSK Ultrasound
InVisus Pro

Print article

Canales

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más