IA ayuda a radiólogos a detectar y predecir diabetes tipo 2 en TC abdominales
Por el equipo editorial de MedImaging en español Actualizado el 12 Apr 2022 |

Un estudio que utilizó aprendizaje profundo completamente automatizado para investigar a pacientes que previamente se sometieron a exámenes de detección de cáncer colorrectal mediante colonografía por TC, descubrió que los biomarcadores de TC podrían ayudar a diagnosticar etapas tempranas de la diabetes tipo 2 y permitir a los pacientes realizar cambios en el estilo de vida para alterar el curso de esta enfermedad crónica.
En el estudio, los investigadores de la Escuela de Medicina de Rutgers New Jersey (Newark, NJ, EUA) usaron escaneos de 8.992 pacientes, incluidos 572 que tenían diabetes tipo 2 y 1.880 que tenían problemas con azúcar en sangre inestable. Utilizaron un método de aprendizaje profundo completamente automatizado para segmentar el páncreas y generar mediciones para varios biomarcadores pancreáticos. También se incluyeron algunos biomarcadores extrapancreáticos como la grasa visceral y la placa aterosclerótica. Luego separaron a los sujetos en grupos según el tiempo entre el diagnóstico de diabetes tipo 2 y la fecha en que se tomaron las tomografías computarizadas. Los investigadores realizaron análisis univariables y multivariables de las mediciones. Incluyeron varios factores clínicos y derivados de la TC, como el sexo, la edad, el índice de masa corporal (IMC) y el IMC superior a 30 de los pacientes, y determinaron el mejor conjunto de predictores de diabetes tipo 2 mediante regresiones logísticas multinomiales.
Los resultados mostraron que los pacientes con diabetes tipo 2 tenían, en promedio, valores más bajos de atenuación de TC de páncreas, músculo e hígado, lo que indica mayores cantidades de grasa intraorgánica en comparación con los no diabéticos. Los mejores predictores de diabetes tipo 2 incluyeron la desviación estándar de la atenuación de la TC del páncreas, la dimensión fractal del páncreas, el volumen de grasa visceral, la gravedad de la placa aórtica abdominal y el IMC superior a 30. Los investigadores reconocieron las limitaciones del uso retrospectivo del conjunto de datos como así como la dificultad de realizar la segmentación del páncreas, pero señalaron que el modelo de aprendizaje profundo tenía un coeficiente de similitud de Dice promedio de 0,69 en casos de prueba seleccionados, lo que se considera un rendimiento de vanguardia para la segmentación del páncreas en TC sin contraste. El rendimiento del modelo alentó al equipo, ya que el modelo multivariante final mostró áreas bajo la curva (AUC) por pares que oscilaban entre 0,79 y 0,92 entre diabéticos y no diabéticos.
“En el campo del análisis de imágenes médicas, existe la necesidad de mejorar el análisis automatizado del páncreas y su aplicación a problemas clínicos. Este estudio fue un paso hacia el uso más amplio de métodos automatizados para abordar los desafíos clínicos”, dijo Hima Tallam, estudiante de primer año de MD/PhD en la Escuela de Medicina de Rutgers New Jersey.
“El trabajo anterior ha demostrado que los pacientes con diabetes tienden a acumular más grasa visceral e intrapancreática que los no diabéticos, pero no se ha realizado ningún trabajo significativo utilizando métodos automatizados en un conjunto de datos de esta magnitud”, dijo Tallam. “El análisis multivariable en este estudio, que utiliza características tanto pancreáticas como extrapancreáticas, es un enfoque novedoso y no se ha mostrado en trabajos anteriores hasta donde sabemos. Nos entusiasmó ver que el modelo multivariable con solo factores derivados de la TC y algunos factores clínicos logró altas AUC sin marcadores séricos como la glucosa y la hemoglobina”.
"En última instancia, esperamos que los biomarcadores de TC investigados en este trabajo puedan informar el diagnóstico oportunista de las primeras etapas de la diabetes tipo 2 y permita que los pacientes realicen cambios en el estilo de vida para alterar el curso de esta enfermedad crónica", agregó.
Enlaces relacionados:
Escuela de Medicina de Rutgers New Jersey
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más