Algoritmo impulsado por IA utiliza escaneos fMRI para detectar autismo y predecir gravedad
Por el equipo editorial de MedImaging en español Actualizado el 12 Apr 2022 |

El autismo es uno de los trastornos del desarrollo neurológico más comunes, pero carece de biomarcadores objetivos (medidas reveladoras que indican la presencia de una condición médica y, a veces, la gravedad), lo que significa que no existe una prueba simple para el trastorno. En cambio, el diagnóstico se basa en la observación de los comportamientos de los pacientes, que naturalmente son muy variables y, por lo tanto, hacen que el diagnóstico sea un desafío. Los investigadores ahora han desarrollado un algoritmo que puede ayudar a discernir si alguien tiene autismo al observar escáneres cerebrales.
El nuevo algoritmo, desarrollado por investigadores de la Universidad de Stanford (Stanford, CA, EUA) e impulsado por avances recientes en inteligencia artificial (IA), también predice con éxito la gravedad de los síntomas del autismo en pacientes individuales. Con más perfeccionamiento, el algoritmo podría conducir a diagnósticos más tempranos, terapias más específicas y una comprensión más amplia de los orígenes del autismo en el cerebro.
El algoritmo estudia minuciosamente los datos recopilados a través de exploraciones de resonancia magnética funcional (IRMf). Estos escaneos capturan patrones de actividad neuronal en todo el cerebro. Los científicos han buscado durante mucho tiempo biomarcadores a través de exploraciones de IRMf. Sin embargo, los estudios realizados hasta la fecha con poblaciones pequeñas han informado resultados contradictorios, derivados de la variabilidad natural en los cerebros de los pacientes y confundidos aún más por las diferencias en las máquinas de resonancia magnética funcional y los métodos de prueba. Al derivar sus algoritmos de reconocimiento de imágenes, los investigadores buscaron hacer que la inteligencia artificial fuera explicable (o XAI) o comprensible para los investigadores humanos.
Al mapear esta actividad a lo largo del tiempo en muchas regiones del cerebro, el algoritmo genera "huellas dactilares" de actividad neuronal. Aunque son únicas para cada individuo, al igual que las huellas dactilares reales, las huellas dactilares del cerebro comparten características similares, lo que permite ordenarlas y clasificarlas. En un nuevo estudio, el algoritmo evaluó escáneres cerebrales de una muestra de aproximadamente 1.100 pacientes. Con una precisión del 82 %, el algoritmo seleccionó un grupo de pacientes a los que los médicos humanos habían diagnosticado con autismo. El algoritmo XAI se basa en tres regiones del cerebro que muestran diferencias significativas en la interconectividad en una parte agrupable del conjunto de datos. Dando credibilidad a los hallazgos del algoritmo XAI, esas tres regiones del cerebro han estado previamente implicadas en la patología del autismo.
Si bien el algoritmo XAI se desempeñó admirablemente en esta etapa temprana de desarrollo, los investigadores deberán mejorar aún más su precisión para elevar las huellas dactilares cerebrales al nivel de un biomarcador definitivo. Los investigadores tienen la intención de explorar la eficacia del algoritmo en estudios de hermanos, donde un hermano tiene autismo y el otro no, para perfeccionar la capacidad de detectar diferencias precisas pero críticas entre cerebros potencialmente muy similares. Los investigadores prevén que las huellas dactilares cerebrales se utilicen para evaluar los cerebros de niños muy pequeños, quizás desde los seis meses o un año, que tienen un alto riesgo de desarrollar autismo. El diagnóstico temprano es fundamental para lograr mejores resultados, ya que las terapias demuestran ser más efectivas cuando se introducen cuando los pacientes aún son niños pequeños en comparación con una etapa más avanzada de la niñez.
"Aunque el autismo es uno de los trastornos del neurodesarrollo más comunes, hay mucho sobre él que todavía no entendemos", dijo el autor principal Kaustubh Supekar, profesor asistente clínico de psiquiatría y ciencias del comportamiento de Stanford y facultad afiliada de Stanford HAI. "En este estudio, hemos demostrado que nuestro modelo de 'huellas dactilares' del cerebro impulsado por IA podría ser una herramienta nueva y poderosa para avanzar en el diagnóstico y el tratamiento".
“Necesitamos crear biomarcadores objetivos para el autismo”, agregó Supekar, “y las huellas dactilares del cerebro nos acercan un paso más. Esperamos que el enfoque demostrado en nuestro estudio pueda diagnosticar el autismo durante la ventana de oportunidad cuando las intervenciones son más efectivas al máximo”.
Enlaces relacionados:
Universidad de Stanford
Últimas RM noticias
- Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
- Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
- La RM biparamétrica combinada con IA mejora la detección del cáncer de próstata clínicamente significativo
- Plataforma de imágenes cerebrales impulsada por IA orienta el tratamiento del ACV
- Nuevo modelo mejora la comparación de RM tomadas en diferentes instituciones
- Nuevo escáner innovador detecta la propagación del cáncer que antes era inobservable
- Herramienta pionera analiza resonancias magnéticas para medir el envejecimiento cerebral
- Imágenes de RM mejoradas por IA hacen que el tejido mamario canceroso brille
- Modelo de IA segmenta automáticamente imágenes de resonancia magnética
- Nueva investigación respalda la RM cerebral de rutina en pacientes asintomáticas con cáncer de mama en etapa avanzada
- Dispositivo portátil realiza imágenes rápidas por MRI de accidentes cerebrovasculares junto a la cama del paciente
- La IA predice los efectos secundarios de la cirugía de tumores cerebrales a partir de resonancias magnéticas
- Estrategia de resonancia magnética primero para detección de cáncer de próstata demostrada segura
- Nuevo modelo hace que la resonancia magnética sea más precisa y confiable
- Nuevo método de escaneo muestra los efectos del tratamiento en la función pulmonar en tiempo real
- Escaneo simple podría identificar a pacientes en riesgo de problemas cardíacos graves
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más