IA predice riesgo de recurrencia del cáncer de pulmón mediante tomografías computarizadas
Por el equipo editorial de MedImaging en español Actualizado el 28 Dec 2022 |

El cáncer de pulmón de células no pequeñas (CPCNP) representa casi cinco sextos (85 %) de los casos de cáncer de pulmón y, cuando se detecta a tiempo, la enfermedad suele ser curable. Sin embargo, más de un tercio (36 %) de los pacientes con CPCNP en el Reino Unido experimentan una reaparición del cáncer, lo que se conoce como recurrencia. Según los últimos resultados de un estudio, la inteligencia artificial (IA) podría ayudar a identificar el riesgo de que el cáncer regrese en pacientes con CPCNP mediante tomografías computarizadas.
La última fase del estudio OCTAPUS-AI dirigido por investigadores de The Royal Marsden NHS Foundation Trust (Londres, Reino Unido) utilizó imágenes y datos clínicos de más de 900 pacientes con CPCNP del Reino Unido y los Países Bajos después de radioterapia curativa para desarrollar y probar algoritmos de aprendizaje automático (ML) para ver con qué precisión los modelos podrían predecir la recurrencia. Se utilizó una medida conocida como “área bajo la curva” (AUC) para expresar la efectividad de esta herramienta. Un AUC de uno significa que el sistema siempre es correcto; 0,5 es el puntaje que esperaría si fuera una suposición aleatoria y cero significa que siempre está equivocado.
Los datos de imágenes se tomaron de las tomografías computarizadas de planificación del tratamiento, que todos los pacientes con CPCNP realizan antes de la radioterapia. Para analizar estos datos, los investigadores utilizaron una técnica llamada radiómica, que puede extraer información de pronóstico sobre la enfermedad del paciente a partir de imágenes médicas que el ojo humano no puede ver. Los datos de esta técnica también pueden vincularse potencialmente con marcadores biológicos. Como resultado, los investigadores creen que la radiómica podría ser una herramienta útil tanto para personalizar la medicina como para mejorar la vigilancia posterior al tratamiento.
Los resultados del estudio revelan que el modelo de los investigadores fue mejor para identificar correctamente qué pacientes con CPCNP tenían un mayor riesgo de recurrencia dentro de los dos años posteriores a la finalización de la radioterapia, que un modelo basado en el sistema de estadificación TNM. Este modelo logró un AUC de 0,738, mejorando la técnica de estadificación TNM tradicional que obtuvo una puntuación de 0,683. TNM, que describe la cantidad y la propagación del cáncer en el cuerpo de un paciente, es actualmente el estándar de oro para predecir el pronóstico de los pacientes con cáncer.
“Si bien se encuentra en una etapa muy temprana, este trabajo sugiere que nuestro modelo podría ser mejor para predecir correctamente el nuevo crecimiento del tumor que los métodos tradicionales. Esto significa que, al usar nuestra tecnología, los médicos pueden eventualmente identificar la recurrencia antes en pacientes de alto riesgo”, dijo el líder del estudio, el Dr. Sumeet Hindocha, registrador especialista en oncología clínica en The Royal Marsden NHS Foundation Trust y miembro de investigación clínica en el Colegio Imperial de Londres. “A continuación, queremos explorar técnicas de aprendizaje automático más avanzadas, como el aprendizaje profundo, para ver si podemos obtener resultados aún mejores. Luego queremos probar este modelo en pacientes con CPCNP recién diagnosticados y seguirlos para ver si el modelo puede predecir con precisión su riesgo de recurrencia”.
Enlaces relacionados:
The Royal Marsden NHS Foundation Trust
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más