Primer modelo de IA de aprendizaje profundo clasifica pacientes con dolor torácico mediante rayos X
Por el equipo editorial de MedImaging en español Actualizado el 20 Jan 2023 |

El síndrome de dolor torácico agudo puede implicar opresión, ardor u otras molestias en el pecho o un dolor intenso que se extiende a la espalda, el cuello, los hombros, los brazos o la mandíbula, acompañado de dificultad para respirar. En los EUA, el síndrome de dolor torácico agudo comprende más de siete millones de visitas al departamento de emergencias, lo que lo convierte en una de las quejas más comunes. Sin embargo, menos del 8 % de estos pacientes son diagnosticados con las tres principales causas cardiovasculares del síndrome de dolor torácico agudo: síndrome coronario agudo, embolia pulmonar o disección aórtica. Sin embargo, la naturaleza potencialmente mortal de estas afecciones y la baja especificidad de las pruebas clínicas, como electrocardiogramas y análisis de sangre, dan como resultado un uso significativo de diagnóstico por imágenes cardiovascular y pulmonar, que generalmente termina con resultados negativos. Dado que los departamentos de emergencia luchan por manejar el aumento de pacientes y la escasez de camas de hospital, existe una necesidad vital de clasificar de manera efectiva a los pacientes con un riesgo muy bajo de estas afecciones graves. Ahora, un nuevo estudio ha encontrado que la inteligencia artificial (IA) puede ayudar a mejorar la atención de los pacientes que acuden a los departamentos de emergencia del hospital con dolor torácico agudo.
El aprendizaje profundo es un tipo avanzado de IA que se puede entrenar para buscar imágenes de rayos X para identificar patrones asociados con enfermedades. Para el estudio, los investigadores del Hospital General de Massachusetts (MGH, Boston, MA, EUA) desarrollaron un modelo de aprendizaje profundo de fuente abierta para identificar pacientes con síndrome de dolor torácico agudo que estaban en riesgo a 30 días de síndrome coronario agudo, embolia pulmonar, disección aórtica o mortalidad por todas las causas, según una radiografía de tórax. El estudio evaluó las historias clínicas electrónicas de 5.750 pacientes (edad media 59 años, incluidos 3.329 hombres) que presentaban síndrome de dolor torácico agudo y a los que se les realizó una radiografía de tórax e imágenes cardiovasculares o pulmonares adicionales y/o pruebas de esfuerzo entre enero de 2005 y diciembre de 2015.
Los investigadores entrenaron el modelo de aprendizaje profundo en 23.005 pacientes para predecir un criterio de valoración compuesto de 30 días de síndrome coronario agudo, embolia pulmonar o disección aórtica y mortalidad por todas las causas basándose en imágenes de rayos X de tórax. El equipo descubrió que la herramienta de aprendizaje profundo mejoró significativamente la predicción de estos resultados adversos más allá de la edad, el sexo y los marcadores clínicos convencionales, como los análisis de sangre del dímero D, y también mantuvo su precisión diagnóstica en función de la edad, el sexo, el origen étnico y la raza. Con un umbral de sensibilidad del 99 %, el modelo logró aplazar las pruebas adicionales en el 14 % de los pacientes frente al 2 % cuando se usaba un modelo que solo incorporaba datos de edad, sexo y biomarcadores. En el futuro, un modelo automatizado de este tipo podría analizar las radiografías de tórax en segundo plano y permitir a los médicos seleccionar a los que más se beneficiarían de la atención médica inmediata, así como ayudar a identificar a los pacientes que pueden ser dados de alta de manera segura del departamento de emergencias.
"Hasta donde sabemos, nuestro modelo de IA de aprendizaje profundo es el primero en utilizar radiografías de tórax para identificar a los pacientes con dolor torácico agudo que necesitan atención médica inmediata", dijo el autor principal del estudio, Márton Kolossváry, MD, Ph. D., investigador de radiología en MGH. "Al analizar la radiografía de tórax inicial de estos pacientes con nuestro modelo de aprendizaje profundo automatizado, pudimos proporcionar predicciones más precisas sobre los resultados de los pacientes en comparación con un modelo que utiliza información sobre la edad, el sexo, la troponina o el dímero D. Nuestros resultados muestran que las radiografías de tórax podrían usarse para ayudar a clasificar a los pacientes con dolor de pecho en el departamento de emergencias".
Últimas Radiografía noticias
- Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
- Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
- Las mamografías impulsadas por IA predicen el riesgo cardiovascular
- Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
- La mamografía impulsada por IA mejora la detección de cáncer en entornos de lectura única
- Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color
- La IA puede señalar mamografías para una resonancia magnética suplementaria
- Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación
- Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías
- Sensores de rayos X orgánicos imprimibles podrían transformar el tratamiento del cáncer
- Detector altamente sensible y plegable hace que la radiografía sea más segura
- Nueva tecnología de detección de cáncer de mama podría ofrecer una alternativa superior a la mamografía
- Inteligencia artificial predice con precisión el cáncer de mama años antes del diagnóstico
- Radiografía de tórax con IA detecta nódulos pulmonares tres años antes de los síntomas del cáncer de pulmón
- Modelo de IA identifica fracturas por compresión vertebral en radiografías de tórax
- La mamografía 3D avanzada puede detectar más cánceres de mama
Canales
RM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más