MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Imágenes por ultrasonido alimentadas por IA detectan el cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 17 Mar 2023
Print article
Imagen: Un sistema de red de IA para la ecografía detecta y diagnostica con precisión el cáncer de mama (Fotografía cortesía de Pexels)
Imagen: Un sistema de red de IA para la ecografía detecta y diagnostica con precisión el cáncer de mama (Fotografía cortesía de Pexels)

El cáncer de mama es, sin lugar a dudas, el tipo de cáncer más comúnmente informado entre las mujeres, mostrando un aumento continuo en las tasas de incidencia en las últimas dos décadas, a diferencia de otros tipos de cáncer significativos. La detección y el tratamiento tempranos pueden mejorar la probabilidad de recuperación; sin embargo, la tasa de supervivencia en pacientes con cáncer de mama disminuye drásticamente a menos del 75 % después de la tercera etapa. Como resultado, los chequeos médicos regulares son fundamentales para reducir las tasas de mortalidad. La ecografía es una de las principales técnicas de imagen médica para la evaluación de las lesiones mamarias, y los sistemas de diagnóstico asistido por computadora (DAC) han ayudado a los radiólogos a segmentar e identificar las características de las lesiones para distinguir entre lesiones benignas y malignas. Ahora, un equipo de investigadores ha desarrollado un sistema de red de IA para ultrasonografía para detectar y diagnosticar con precisión el cáncer de mama.

Un equipo de investigadores de la Universidad de Ciencia y Tecnología de Pohang (POSTECH, Gyeongbuk, Corea) ha desarrollado una red de fusión multimodal basada en el aprendizaje profundo para la segmentación y clasificación de los cánceres de mama utilizando imágenes de ultrasonido en modo B y elastografía de tensión. El equipo desarrolló métodos basados en el aprendizaje profundo (DL) para segmentar las lesiones y luego clasificarlas como benignas o malignas, utilizando imágenes en modo B y elastografía de tensión (modo SE). Primero, el equipo construyó un 'modelo U-Net multimodal ponderado (W-MM-U-Net)' en el que se asigna el peso óptimo en diferentes modalidades de imágenes para segmentar lesiones, utilizando un método de conexión de salto ponderado. Los investigadores también han propuesto un "marco de fusión multimodal (MFF)" en imágenes recortadas de lesiones de ultrasonido (US) en modo B y modo SE para clasificar las lesiones benignas y malignas.

El MFF consta de una red de características integradas (IFN) y una red de decisión (DN). A diferencia de otros métodos de fusión recientes, el método MFF propuesto puede aprender simultáneamente información complementaria de redes neuronales convolucionales (CNN) que se entrenan con imágenes de EUA en modo B y modo SE. Las características de la CNN se combinan utilizando el modelo multimodal EmbraceNet, mientras que DN clasifica las imágenes utilizando esas características. Los resultados experimentales de los datos clínicos revelan que el método identificó siete pacientes benignos como benignos en tres de los cinco ensayos y seis pacientes malignos como malignos en cinco de los cinco ensayos. Esto indica que el método propuesto supera a los métodos convencionales únicos y multimodales y podría mejorar la precisión de clasificación de los radiólogos para la detección de cáncer de mama en imágenes de ultrasonido.

"Pudimos aumentar la precisión de la segmentación de lesiones determinando la importancia de cada modo de entrada y otorgar automáticamente la ponderación adecuada", explicó el profesor Chulhong Kim de POSTECH, quien dirigió el equipo de investigadores. “Entrenamos cada modelo de aprendizaje profundo y el modelo de combinación al mismo tiempo para tener un desempeño de clasificación mucho mejor que el modal único convencional u otros métodos multimodales”.

Enlaces relacionados:
POSTECH

Ultrasound Imaging System
P12 Elite
3T MRI Scanner
MAGNETOM Cima.X
New
Radiation Shielding
Oversize Thyroid Shield
40/80-Slice CT System
uCT 528

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más