IA es tan buena como los radiólogos expertos en diagnóstico de fracturas de cadera a partir de rayos X
Por el equipo editorial de MedImaging en español Actualizado el 24 Mar 2023 |

Las fracturas de cadera constituyen más del 14 % del total de fracturas entre los ancianos, pero representan un asombroso 72 % de todos los gastos de atención médica relacionados con fracturas. Las predicciones indican que, en todo el mundo, el número de fracturas de cadera se disparará a 6,3 millones para 2050, y se espera que los gastos asociados alcancen los 131.500 millones de dólares anuales. Estas lesiones no solo presentan riesgos significativos de morbilidad y mortalidad, sino que también causan una tasa de mortalidad de 1 año de aproximadamente 25 % a 30 %. Dadas estas estadísticas preocupantes, existe una necesidad urgente de tecnología avanzada que pueda mejorar el manejo de la afección, que lleve a mejores resultados para los pacientes y ventajas económicas para los sistemas de atención médica. Con el advenimiento de la inteligencia artificial (IA), las herramientas de diagnóstico clínico y pronóstico para las fracturas de cadera pueden aprovechar poderosos modelos predictivos, aunque se sabe poco sobre el rendimiento y el impacto de estos nuevos algoritmos. Ahora, los hallazgos de un nuevo estudio sugieren que la IA tiene el potencial de automatizar el diagnóstico de fracturas de cadera, aunque los modelos de IA demasiado complejos e imposibles de interpretar pueden no generar beneficios significativos cuando se trata de predecir resultados específicos del paciente en comparación con los modelos interpretables tradicionales.
Investigadores de la Universidad de Toronto (Toronto, ON, Canadá) evaluaron la efectividad de los algoritmos impulsados por IA para detectar fracturas de cadera en radiografías y predecir los resultados clínicos posoperatorios después de la cirugía de cadera. Para lograr esto, se llevó a cabo una revisión sistemática y un metanálisis de 39 estudios para determinar la precisión del diagnóstico de fractura de cadera tanto por modelos de IA como por profesionales de la salud expertos. El estudio encontró que la precisión diagnóstica de los modelos de IA era comparable a la de los médicos expertos, con tasas de error similares. La precisión diagnóstica de la IA en relación con los médicos expertos se midió mediante índices de probabilidad (OR) con IC del 95 %. Además, los investigadores compararon el área bajo las curvas para la predicción de los resultados posoperatorios entre los modelos estadísticos tradicionales (p. ej., lineal multivariable o regresión logística) y los modelos de aprendizaje automático (ML).
De los 39 estudios que cumplieron con los criterios, 18 (46,2 %) utilizaron modelos de IA para detectar fracturas de cadera a partir de radiografías simples, mientras que 21 (53,8 %) utilizaron modelos de IA para predecir los resultados de los pacientes después de la cirugía de cadera. En total, los estudios utilizaron 39.598 radiografías simples y 714.939 fracturas de cadera para entrenar, validar y probar los modelos de ML específicos para el diagnóstico y la predicción del resultado posoperatorio. Los resultados predichos con mayor frecuencia fueron la mortalidad y la duración de la estancia en el hospital. Después de un análisis de datos agrupados, los modelos ML tuvieron un error de diagnóstico OR de 0,79 (IC del 95 %, 0,48-1,31; P = 0,36; I2 = 60 %) para las radiografías de fractura de cadera en comparación con los médicos. Para los modelos ML, la sensibilidad media (SD) fue del 89,3 % (8,5 %), la especificidad fue del 87,5 % (9,9 %) y la puntuación F1 fue de 0,90 (0,06). El área promedio bajo la curva para la predicción de mortalidad fue de 0,84 con modelos ML en comparación con 0,79 para controles alternativos (P = 0,09).
Según los resultados de esta revisión sistemática y metanálisis, la IA parece muy prometedora para ayudar en el diagnóstico de fracturas de cadera mediante radiografías. Se descubrió que el desempeño de los modelos de IA en la detección de fracturas de cadera es comparable al de los radiólogos y cirujanos expertos. Sin embargo, las implementaciones actuales de IA para la predicción de resultados no parecían ofrecer beneficios significativos sobre las estadísticas predictivas multivariables tradicionales.
Enlaces relacionados:
Universidad de Toronto
Últimas Radiografía noticias
- Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
- Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
- Las mamografías impulsadas por IA predicen el riesgo cardiovascular
- Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
- La mamografía impulsada por IA mejora la detección de cáncer en entornos de lectura única
- Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color
- La IA puede señalar mamografías para una resonancia magnética suplementaria
- Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación
- Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías
- Sensores de rayos X orgánicos imprimibles podrían transformar el tratamiento del cáncer
- Detector altamente sensible y plegable hace que la radiografía sea más segura
- Nueva tecnología de detección de cáncer de mama podría ofrecer una alternativa superior a la mamografía
- Inteligencia artificial predice con precisión el cáncer de mama años antes del diagnóstico
- Radiografía de tórax con IA detecta nódulos pulmonares tres años antes de los síntomas del cáncer de pulmón
- Modelo de IA identifica fracturas por compresión vertebral en radiografías de tórax
- La mamografía 3D avanzada puede detectar más cánceres de mama
Canales
RM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más