Herramienta de inteligencia artificial diagnostica la atrofia muscular en pacientes con cáncer de cabeza y cuello a partir de TC
Por el equipo editorial de MedImaging en español Actualizado el 22 Aug 2023 |

Los cánceres de cabeza y cuello presentan un desafío de tratamiento importante, que a menudo requiere una combinación de cirugía, radiación y quimioterapia. Si bien estos tratamientos pueden ser eficaces para curar la enfermedad, también son conocidos por sus graves efectos secundarios. Una preocupación clave es el desarrollo de sarcopenia o atrofia muscular. Esta afección puede provocar dificultades para comer y beber, lo que provoca desnutrición y una cantidad de problemas, incluida la posible necesidad de una sonda de alimentación, una reducción de la calidad de vida e incluso una muerte más temprana. La detección temprana de la sarcopenia es esencial, pero tradicionalmente ha sido un proceso laborioso. Los médicos suelen evaluar la masa muscular mediante tomografías computarizadas (TC), ya sea del abdomen o del cuello. Dado que las TC del cuello son comunes en pacientes con cáncer de cabeza y cuello, ofrecen una oportunidad para la identificación e intervención tempranas de la sarcopenia. Sin embargo, el diagnóstico de sarcopenia a partir de estos estudios requiere de un experto especializado que pueda diferenciar el músculo de otros tejidos, un proceso que puede tardar hasta 10 minutos por cada exploración.
Investigadores del Instituto Oncológico Dana-Farber (Boston, MA, EUA) han desarrollado una herramienta de inteligencia artificial (IA) que puede diagnosticar de manera rápida y precisa la sarcopenia mediante tomografías computarizadas del cuello en pacientes con cáncer de cabeza y cuello. La aplicación de IA agiliza lo que de otro modo sería un proceso minucioso y propenso a errores humanos, realizando la evaluación en solo 0,15 segundos. El proceso de desarrollo comenzó entrenando el modelo de IA utilizando historias clínicas y tomografías computarizadas de 420 pacientes. Un experto evaluó manualmente la masa muscular de cada paciente en función de las exploraciones y calculó una puntuación de índice músculoesquelético (SMI). Estos datos se utilizaron para entrenar el modelo de aprendizaje profundo y se utilizó un segundo conjunto de datos para validar el rendimiento del modelo. Sorprendentemente, el modelo realizó evaluaciones clínicamente aceptables el 96,2 % de las veces.
La herramienta podría tener amplias aplicaciones clínicas. Los métodos actuales a menudo se basan en el índice de masa corporal (IMC) como indicador del deterioro de la salud relacionado con el tratamiento. Sin embargo, cuando el equipo comparó la eficacia del IMC y el SMI para predecir resultados deficientes, descubrieron que el SMI era un predictor superior, lo que sugiere que podría convertirse en una herramienta clínica importante. La introducción de la evaluación basada en IA significa que la sarcopenia podría monitorearse con frecuencia durante todo el tratamiento de un paciente. La detección temprana podría impulsar intervenciones como apoyo nutricional, medicación o fisioterapia, lo que podría mejorar los resultados generales. También podría influir en las decisiones de tratamiento desde el principio, ya que comprender la masa muscular de un paciente podría orientar una estrategia de tratamiento personalizada, quizás más suave.
“La sarcopenia es un indicador de que el paciente no se encuentra bien. Una herramienta en tiempo real que nos indique cuándo un paciente está perdiendo masa muscular nos impulsaría a intervenir y hacer algo de apoyo para ayudar”, dijo el autor principal Benjamin Kann, MD, oncólogo radioterápico del Departamento de Oncología Radioterápica del Centro Oncológico Dana-Farber Brigham.
Enlaces relacionados:
Instituto Oncológico Dana-Farber
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más