Herramienta de rayos X con IA estima densidad mineral ósea para diagnóstico temprano de osteoporosis
Por el equipo editorial de MedImaging en español Actualizado el 20 Oct 2023 |

La osteoporosis es un problema de salud común que conduce a una baja densidad mineral ósea (DMO), lo que hace que los huesos sean frágiles y aumenta el riesgo de fracturas. Diagnosticar esta afección generalmente implica pruebas especializadas y a menudo costosas, como la absorciometría de rayos X de doble energía (DXA) y la tomografía computarizada cuantitativa (TCC). Debido a estas limitaciones, se necesitan opciones de detección más convenientes y económicas. Recientemente, las técnicas de aprendizaje automático que utilizan imágenes de rayos X para estimar la DMO se han vuelto más populares, pero a menudo requieren datos de entrenamiento extensos. Los investigadores ahora han ideado un método de aprendizaje automático que ofrece una forma más sencilla de detectar la osteoporosis y otras afecciones óseas desde el principio.
Investigadores del Instituto Nara de Ciencia y Tecnología (NAIST, Nara, Japón) han ideado un método innovador que utiliza un tipo de aprendizaje automático conocido como marco de aprendizaje jerárquico. Este método estima la DMO a partir de imágenes de rayos X estándar. El equipo de investigación utilizó exploraciones de TCC originales de pacientes para crear una imagen de rayos X virtual del área del hueso, alineándola con precisión con las radiografías reales del paciente. Luego, estos datos se utilizaron en tres fases de entrenamiento distintas para desarrollar un modelo final de estimación de DMO. Inicialmente, el modelo se centró en descomponer las imágenes de rayos X para crear una imagen de rayos X virtual del área del hueso. En la fase final, se entrenó el modelo para reconocer la relación entre estas imágenes de rayos X virtuales y los valores de DMO.
Este método pudo estimar con precisión la DMO utilizando una sola imagen de rayos X y demostró una alta eficacia incluso con un par de cientos de conjuntos de datos de pares de imágenes de TC y rayos X. El modelo no sólo proporciona el valor de DMO sino que también genera una imagen de rayos X virtual que muestra la distribución de la densidad ósea, lo que que hace que los resultados sena fáciles de comprender. Para evaluar su eficacia en comparación con métodos tradicionales como DXA y TCC, los investigadores realizaron pruebas de validación con datos clínicos reales. Los valores de DMO obtenidos mediante este nuevo método mostraron una fuerte correlación con los derivados de DXA y TCC, lo que confirma su fiabilidad.
Pruebas de validación adicionales demostraron aún más la solidez de este método. Produjo estimaciones consistentes de DMO a pesar de los cambios en la posición del paciente o los diferentes niveles de compresión de la imagen. Los resultados indican que este nuevo método tiene un enorme potencial para uso médico habitual. Ofrece una manera conveniente de detectar la osteoporosis y monitorear el tratamiento, permitiendo una intervención oportuna y mejorando potencialmente las vidas de quienes viven con la afección.
"La osteoporosis generalmente se diagnostica en etapas avanzadas una vez que sus síntomas se vuelven evidentes. Las imágenes de rayos X pueden ser valiosas para el diagnóstico oportunista, pero extraer eficientemente información sobre la DMO de ellas ha sido un desafío importante", dijo Yoshito Otake de NAIST. "Esperábamos resolver este problema utilizando información derivada de la imagen de tomografía computarizada (TC) en la etapa de entrenamiento para desarrollar un modelo para una estimación precisa, eficiente y explicable de la DMO únicamente a partir de una imagen de rayos X".
Enlaces relacionados:
NAIST
Últimas Radiografía noticias
- Algoritmo de aprendizaje automático identifica riesgo cardiovascular a partir de escaneos ósea de rutina
- La IA mejora la detección temprana de los cánceres de mama de intervalo
- Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
- Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
- Las mamografías impulsadas por IA predicen el riesgo cardiovascular
- Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
- La mamografía impulsada por IA mejora la detección de cáncer en entornos de lectura única
- Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color
- La IA puede señalar mamografías para una resonancia magnética suplementaria
- Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación
- Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías
- Sensores de rayos X orgánicos imprimibles podrían transformar el tratamiento del cáncer
- Detector altamente sensible y plegable hace que la radiografía sea más segura
- Nueva tecnología de detección de cáncer de mama podría ofrecer una alternativa superior a la mamografía
- Inteligencia artificial predice con precisión el cáncer de mama años antes del diagnóstico
- Radiografía de tórax con IA detecta nódulos pulmonares tres años antes de los síntomas del cáncer de pulmón
Canales
RM
ver canal
Examen de resonancia magnética más corto detecta eficazmente el cáncer en mamas densas
Las mujeres con mamas extremadamente densas se enfrentan a un mayor riesgo de no recibir un diagnóstico de cáncer de mama, ya que el tejido glandular y fibroso denso puede ocultar los tumores... Más
La resonancia magnética reemplazará la dolorosa punción lumbar para un diagnóstico más rápido de la EM
La esclerosis múltiple (EM) es una enfermedad neurológica difícil de diagnosticar debido a su amplia gama de síntomas. No todos los pacientes experimentan los mismos síntomas... MásUltrasonido
ver canal
Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes
Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata
El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más
Nuevo anticuerpo radiomarcado mejora el diagnóstico y tratamiento de tumores sólidos
El receptor de interleucina-13 α-2 (IL13Rα2) es un receptor de superficie celular que se encuentra comúnmente en tumores sólidos como el glioblastoma, el melanoma y el cáncer... MásImaginología General
ver canal
Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más
Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
La terapia con radioligandos, una forma de medicina nuclear dirigida, ha cobrado relevancia recientemente por su potencial en el tratamiento de tipos específicos de tumores. Sin embargo, uno de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más