MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Sistema de IA combina imágenes por TC con datos clínicos y genéticos para detección temprana del cáncer de pulmón

Por el equipo editorial de MedImaging en español
Actualizado el 19 Mar 2024
Print article
Imagen: Un nuevo estudio sugiere que las imágenes de TC con el sistema automatizado de IA pueden predecir el genotipo RFCE (Fotografía cortesía de 123RF)
Imagen: Un nuevo estudio sugiere que las imágenes de TC con el sistema automatizado de IA pueden predecir el genotipo RFCE (Fotografía cortesía de 123RF)

El pronóstico del carcinoma de pulmón ha evolucionado significativamente con el descubrimiento de dianas moleculares y sus correspondientes tratamientos. Específicamente, las mutaciones en el gen del receptor del factor de crecimiento epidérmico (RFCE), que se encuentra en el carcinoma de pulmón, sirven como objetivos clave para terapias especializadas. Sin embargo, en países con recursos limitados como la India, los métodos de prueba avanzados, como la secuenciación de próxima generación, siguen siendo inaccesibles para un uso generalizado. Los desafíos también incluyen obtener suficiente tejido a partir de biopsias centrales de pulmón y lidiar con la heterogeneidad intratumoral inherente que complica la identificación de tejidos tumorales adecuados. Ahora, los investigadores han demostrado que un sistema basado en IA puede detectar y analizar automáticamente las características de los nódulos pulmonares a partir de imágenes de TC, prediciendo la probabilidad de mutaciones del RFCE. Esta innovación ayuda a los oncólogos y pacientes en entornos con recursos limitados brindándoles una atención casi óptima y guiando las decisiones de tratamiento adecuadas.

Estudios anteriores que aprovechan la IA con imágenes de TC se han mostrado prometedores a la hora de categorizar y analizar nódulos pulmonares sin incurrir en costos adicionales. Sin embargo, la mayoría de estos métodos se han centrado únicamente en la detección de nódulos en imágenes de TC. Además, si bien la IA se ha utilizado para extraer información pulmonar completa para predecir el genotipo de RFCE y evaluar las respuestas a la terapia dirigida contra el cáncer de pulmón, dichos esfuerzos se han enfocado mayormente en las poblaciones blanca y china. Centrándose principalmente en la población india, investigadores dirigidos por el Instituto y Centro de Investigación Oncológico Rajiv Gandhi (Nueva Delhi, India) se propusieron desarrollar una estrategia basada en IA que no solo pudiera detectar sino también caracterizar nódulos pulmonares, indicando el estado mutacional del RFCE en pacientes con carcinoma de pulmonar. Esto ayudaría a clasificar a los pacientes que requieren un perfil molecular extenso del gen controlador RFCE.

El equipo creó un sistema predictivo basado en IA (AIPS) totalmente automatizado utilizando algoritmos de aprendizaje automático (ML) y aprendizaje profundo (DL). Este sistema puede detectar características de nódulos pulmonares a partir de imágenes de TC y evaluar la probabilidad de una mutación de RFCE, eliminando así la necesidad de anotaciones de imágenes que requieren mucho tiempo por parte de radiólogos y de ingeniería de características complejas. Además de incorporar la secuenciación del gen RFCE y los datos de imágenes por TC de 2.277 pacientes con carcinoma de pulmón en tres cohortes en la India y una cohorte de población blanca de TCIA, los investigadores utilizaron la cohorte LIDC-IDRI para entrenar el modelo AIPS-Nodule (AIPS-N). Este modelo detecta y caracteriza automáticamente los nódulos pulmonares. Se evaluó la eficacia de la combinación del modelo AIPS-N con factores clínicos en el modelo AIPS-Mutación (AIPS-M) para predecir el genotipo RFCE, logrando valores de área bajo la curva (AUC) que oscilaban entre 0,587 y 0,910. El AIPS-N detectó con éxito nódulos con un AP50 promedio del 70,19 % y predijo puntuaciones para cinco propiedades de los nódulos pulmonares. Esta investigación sugiere que las imágenes por TC combinadas con un sistema automatizado de IA para el análisis de nódulos pulmonares pueden predecir de manera no invasiva y rentable el genotipo de RFCE, identificando pacientes con mutaciones de RFCE.

Enlaces relacionados:
Instituto y Centro de Investigación Oncológico Rajiv Gandhi
 

New
Mobile Cath Lab
Photon F65/F80
Digital X-Ray Detector Panel
Acuity G4
Diagnostic Ultrasound System
MS1700C
New
Ultrasound Table
Women’s Ultrasound EA Table

Print article

Canales

Radiografía

ver canal
Imagen: Sistema de imágenes de rayos X en color y contraste de fases utilizado en la investigación (Foto cortesía de la Universidad de Houston)

Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color

Durante muchos años, los profesionales de la salud han dependido de las radiografías 2D tradicionales para diagnosticar fracturas óseas comunes, aunque a menudo pueden pasarse por... Más

Ultrasonido

ver canal
Imagen: el modelo entrenado en ecocardiografía, puede identificar enfermedades hepáticas en personas asintomáticas (foto cortesía de 123RF)

Inteligencia artificial detecta enfermedad hepática mediante ecocardiogramas

La ecocardiografía es un procedimiento de diagnóstico que utiliza ultrasonidos para visualizar el corazón y sus estructuras asociadas. Esta prueba de diagnóstico por imágenes... Más

Medicina Nuclear

ver canal
Imagen: un fármaco reutilizado para la ELA se ha convertido en una sonda de imágenes para ayudar a diagnosticar la neurodegeneración (Foto cortesía de St. Jude Children’s Research Hospital)

Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración

Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más