Algoritmo de aprendizaje profundo realiza segmentación automática de cerebros neonatales a partir de imágenes de resonancia magnética
Por el equipo editorial de MedImaging en español Actualizado el 03 Apr 2024 |

La resonancia magnética (RMN) es una herramienta vital en el diagnóstico médico, particularmente debido a sus imágenes de alta resolución y contraste superior de los tejidos blandos, que la hacen crucial para evaluaciones cerebrales. Esta técnica de imágenes es particularmente vital para los recién nacidos, especialmente para evaluar la encefalopatía neonatal, donde ayuda a comprender la presencia y el patrón de lesiones cerebrales para un mejor pronóstico y planificación del tratamiento. La integración de la inteligencia artificial (IA) y el aprendizaje automático (ML) ha mejorado significativamente la precisión predictiva de los resultados funcionales en bebés utilizando datos de resonancia magnética. Un paso crucial en la preparación de datos para el análisis de ML de la resonancia magnética cerebral es la extracción del cerebro o la extracción del cráneo. Sin embargo, el desarrollo de algoritmos de extracción de cerebros neonatales ha sido limitado. Para abordar esta brecha, los investigadores han introducido un algoritmo automatizado basado en aprendizaje profundo para la extracción de resonancia magnética cerebral neonatal.
Un esfuerzo de colaboración entre investigadores de la Universidad de California en San Francisco (UCSF) y el Centro Médico de la Universidad de Duke (Durham, Carolina del Norte, EUA) ha llevado a la creación de ANUBEX. Este algoritmo de aprendizaje profundo está diseñado específicamente para la segmentación automática de cerebros neonatales a partir de exploraciones por resonancia magnética. El desarrollo de ANUBEX, un extractor automatizado de resonancia magnética cerebral nnU-Net neonatal, utilizó varias secuencias de resonancia magnética, como imágenes ponderadas en T1, ponderadas en T2 y ponderadas por difusión (DWI) de estudios de resonancia magnética neonatal.
Los investigadores descubrieron que ANUBEX mantiene un rendimiento constante cuando se entrena en exploraciones de resonancia magnética independientes de la secuencia o con movimiento degradado, aunque mostró una efectividad ligeramente menor en cerebros prematuros. El enfoque basado en el aprendizaje profundo de ANUBEX ha demostrado un rendimiento preciso en resonancias magnéticas de alta y baja resolución, ofreciendo un procesamiento computacional rápido. Esta precisión en la segmentación del tejido cerebral es crucial para el análisis de imágenes y las mediciones volumétricas posteriores. Las direcciones futuras de esta investigación incluyen ampliar la evaluación de la precisión de ANUBEX más allá del rango de edad neonatal para incluir a niños pequeños y adultos. Además, es necesario evaluar la eficacia del modelo en cerebros con diversas patologías estructurales.
Enlaces relacionados:
UCSF
Centro Médico de la Universidad de Duke
Últimas RM noticias
- Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
- Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
- La RM biparamétrica combinada con IA mejora la detección del cáncer de próstata clínicamente significativo
- Plataforma de imágenes cerebrales impulsada por IA orienta el tratamiento del ACV
- Nuevo modelo mejora la comparación de RM tomadas en diferentes instituciones
- Nuevo escáner innovador detecta la propagación del cáncer que antes era inobservable
- Herramienta pionera analiza resonancias magnéticas para medir el envejecimiento cerebral
- Imágenes de RM mejoradas por IA hacen que el tejido mamario canceroso brille
- Modelo de IA segmenta automáticamente imágenes de resonancia magnética
- Nueva investigación respalda la RM cerebral de rutina en pacientes asintomáticas con cáncer de mama en etapa avanzada
- Dispositivo portátil realiza imágenes rápidas por MRI de accidentes cerebrovasculares junto a la cama del paciente
- La IA predice los efectos secundarios de la cirugía de tumores cerebrales a partir de resonancias magnéticas
- Estrategia de resonancia magnética primero para detección de cáncer de próstata demostrada segura
- Nuevo modelo hace que la resonancia magnética sea más precisa y confiable
- Nuevo método de escaneo muestra los efectos del tratamiento en la función pulmonar en tiempo real
- Escaneo simple podría identificar a pacientes en riesgo de problemas cardíacos graves
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásImaginología General
ver canal
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... Más
TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
Las infecciones pulmonares pueden poner en peligro la vida de los pacientes con sistemas inmunitarios debilitados, por lo que el diagnóstico oportuno es crucial. Si bien las tomografías computarizadas... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más