Modelo de IA dibuja mapas para identificar con precisión tumores y enfermedades en imágenes médicas
Por el equipo editorial de MedImaging en español Actualizado el 09 Apr 2024 |

La interpretación de las imágenes médicas varía según las diferentes regiones del mundo, particularmente en los países en desarrollo donde la escasez de médicos y las largas colas de pacientes son comunes. La inteligencia artificial (IA) se ha convertido en una ayuda valiosa en estos entornos. La detección automatizada de imágenes médicas que utiliza IA puede actuar como una herramienta de apoyo para los médicos, escaneando previamente imágenes y resaltando hallazgos inusuales, como tumores o indicadores tempranos de enfermedades (biomarcadores), para una revisión médica adicional. Este enfoque no sólo ahorra tiempo sino que también puede mejorar la precisión de los diagnósticos. Sin embargo, los modelos tradicionales de IA carecen de la capacidad de explicar sus hallazgos, indicando simplemente la presencia o ausencia de tumores sin mayor elaboración.
Ahora, investigadores del Instituto Beckman de Ciencia y Tecnología Avanzada (Urbana, Illinois, EUA) han desarrollado un modelo de IA innovador que no sólo detecta anomalías sino que también explica cada decisión que toma. Este modelo, a diferencia de las herramientas de IA estándar, proporciona retroalimentación interpretativa en lugar de simplemente identificar tumores. Convencionalmente, los modelos de IA que ayudan a los médicos se entrenan con numerosas imágenes médicas, algunas que muestran anomalías y otras normales. Estos modelos, al encontrar una nueva imagen, asignan una puntuación de probabilidad que indica la probabilidad de que haya un tumor presente.
Este novedoso modelo de IA va un paso más allá al ofrecer una explicación visual de su proceso de toma de decisiones a través de lo que se conoce como "mapa de equivalencia" (E-map). Este E-map transforma la imagen médica original, como una radiografía o una mamografía, asignando valores a diferentes regiones según su importancia médica para predecir anomalías. El modelo agrega estos valores para derivar una puntuación de diagnóstico final. Este enfoque transparente permite a los médicos ver qué áreas del mapa contribuyeron de manera más significativa al diagnóstico e investigar estas regiones más de cerca, mejorando la comprensión y respondiendo las consultas de los pacientes sobre el proceso de diagnóstico.
El equipo de investigación entrenó este modelo en más de 20.000 imágenes en tres tareas de diagnóstico de enfermedades diferentes. Se le enseñó al modelo a identificar signos tempranos de tumores en mamografías simuladas, a detectar la acumulación de drusas en imágenes retinianas indicativas de degeneración macular y a reconocer la cardiomegalia en radiografías de tórax. En comparación con los sistemas de IA tradicionales sin capacidades de autoexplicación, este nuevo modelo demostró una precisión comparable: 77,8 % en mamografías, 99,1 % en imágenes OCT de retina y 83 % en radiografías de tórax, igualando la precisión de los modelos existentes. El éxito de este modelo, que emplea una red neuronal profunda que imita la complejidad de las neuronas humanas, se atribuye a su diseño inspirado en redes neuronales lineales más simples e interpretables. Los investigadores pretenden ampliar la aplicación de este modelo a varias partes del cuerpo, con la capacidad de distinguir potencialmente entre diferentes anomalías en desarrollos futuros.
"La idea es ayudar a detectar el cáncer y las enfermedades en sus primeras etapas, como una X en un mapa, y comprender cómo se tomó la decisión. Nuestro modelo ayudará a agilizar ese proceso y hacerlo más fácil tanto para los médicos como para los pacientes", dijo Sourya Sengupta, autor principal del estudio y asistente de investigación graduado en el Instituto Beckman.
"Estoy entusiasmado con el beneficio directo de nuestra herramienta para la sociedad, no sólo en términos de mejorar el diagnóstico de enfermedades, sino también en la mejora de la confianza y la transparencia entre médicos y pacientes", añadió el investigador principal Mark Anastasio, investigador del Instituto Beckman y profesor y profesor Donald Biggar Willet y Jefe del Departamento de Bioingeniería de Illinois.
Enlaces relacionados:
Instituto Beckman
Últimas Imaginología General noticias
- Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
- Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
- Herramienta basada en aprendizaje profundo mejora el diagnóstico del cáncer de hígado
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
Canales
Radiografía
ver canal
Algoritmo de aprendizaje automático identifica riesgo cardiovascular a partir de escaneos ósea de rutina
Un nuevo estudio publicado en el Journal of Bone and Mineral Research revela que un programa automatizado de aprendizaje automático puede predecir el riesgo de eventos cardiovasculares y caídas... Más
La IA mejora la detección temprana de los cánceres de mama de intervalo
Los cánceres de mama de intervalo, que aparecen entre mamografías de rutina, son más tratables cuando se detectan a tiempo. La detección temprana puede reducir la necesidad... MásRM
ver canal
Examen de resonancia magnética más corto detecta eficazmente el cáncer en mamas densas
Las mujeres con mamas extremadamente densas se enfrentan a un mayor riesgo de no recibir un diagnóstico de cáncer de mama, ya que el tejido glandular y fibroso denso puede ocultar los tumores... Más
La resonancia magnética reemplazará la dolorosa punción lumbar para un diagnóstico más rápido de la EM
La esclerosis múltiple (EM) es una enfermedad neurológica difícil de diagnosticar debido a su amplia gama de síntomas. No todos los pacientes experimentan los mismos síntomas... MásUltrasonido
ver canal
Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes
Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata
El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más
Nuevo anticuerpo radiomarcado mejora el diagnóstico y tratamiento de tumores sólidos
El receptor de interleucina-13 α-2 (IL13Rα2) es un receptor de superficie celular que se encuentra comúnmente en tumores sólidos como el glioblastoma, el melanoma y el cáncer... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más