Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales

Por el equipo editorial de MedImaging en español
Actualizado el 17 Apr 2024
Print article
Imagen: La herramienta de aprendizaje profundo aprovecha identificación de patrones de comportamiento en imágenes específicas de cada tumor (Fotografía cortesía de VHIO)
Imagen: La herramienta de aprendizaje profundo aprovecha identificación de patrones de comportamiento en imágenes específicas de cada tumor (Fotografía cortesía de VHIO)

El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos. Diferenciar entre estas neoplasias malignas es crucial porque cada tipo exige una estrategia de tratamiento específica, pero presenta un desafío clínico. Actualmente, el diagnóstico no invasivo de los tumores cerebrales se basa en el análisis de imágenes por resonancia magnética (RMN) antes y después de la administración de agentes de contraste. Sin embargo, un diagnóstico concluyente a menudo requiere procedimientos neuroquirúrgicos, que pueden afectar negativamente la calidad de vida del paciente. Ahora, una herramienta de aprendizaje profundo aprovecha los datos de las imágenes por resonancia magnética (RMN) para clasificar con precisión los tumores cerebrales, ayudando así a los médicos a tomar decisiones informadas.

El Diagnóstico en Regiones de Mejora del Contraste de Susceptibilidad para Neuroncología (DISCERN) es una herramienta de aprendizaje profundo y de acceso abierto desarrollada conjuntamente por investigadores del Instituto de Oncología Vall d'Hebron (VHIO, Barcelona, España) y el Hospital Universitario de Bellvitge (Barcelona, España). Se basa en el entrenamiento de patrones utilizando modelos de inteligencia artificial (IA) extraídos de información estándar de resonancia magnética. DISCERN interpreta los datos espaciales y temporales completos disponibles en las resonancias magnéticas convencionales para reconocer patrones específicos de tumores.

Al emplear el aprendizaje profundo, el sistema aprende a distinguir entre las características de varios tumores basándose en exploraciones por resonancia magnética de pacientes previamente diagnosticados. Un estudio liderado por el VHIO demostró la capacidad de DISCERN para facilitar el diagnóstico preciso de tumores cerebrales mediante resonancia magnética de perfusión, superando la precisión de los métodos de diagnóstico tradicionales. Con una tasa de precisión del 78 % en la clasificación de estos cánceres cerebrales comunes, DISCERN representa un avance significativo en el campo. Los desarrolladores han hecho accesible DISCERN a través de una aplicación de código abierto fácil de usar para promover su uso generalizado en la investigación clínica y mejorar la reproducibilidad de los hallazgos.

“DISCERN es una herramienta informática de apoyo al diagnóstico que facilita la clasificación de tumores cerebrales para ayudar a guiar la toma de decisiones médicas por parte de equipos multidisciplinarios con respecyo a la necesidad y el tipo de cirugía necesaria para confirmar el diagnóstico”, afirma Carles Majós, neurorradiólogo clínico e investigador del Hospital Universitario de Bellvitge.

Enlaces relacionados:
VHIO
Hospital Universitario de Bellvitge

New
HF Stationary X-Ray Machine
TR20G
New
Ultrasound Needle Guide
Ultra-Pro 3
New
MRI Infusion Workstation
BeneFusion MRI Station
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

Ultrasonido

ver canal
Imagen: el nuevo tipo de célula T Sonogenetic EchoBack-CAR (Foto cortesía de Longwei Liu/USC)

Células inmunitarias activadas por ultrasonido destruyen células cancerosas

La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más