Modelo de IA alcanza precisión a nivel clínico experto al analizar imágenes por resonancia magnética complejas y escaneos médicas 3D
Por el equipo editorial de MedImaging en español Actualizado el 18 Oct 2024 |

Las redes neuronales artificiales se entrenan realizando cálculos repetidos sobre grandes conjuntos de datos que han sido cuidadosamente examinados y etiquetados por expertos clínicos. Mientras que las imágenes 2D estándar muestran longitud y anchura, las tecnologías de imágenes 3D introducen profundidad, creando imágenes "volumétricas" que requieren más tiempo, habilidad y atención para la interpretación experta. Por ejemplo, una exploración de imágenes de retina 3D puede constar de casi 100 imágenes 2D, lo que requiere varios minutos de examen minucioso por parte de un especialista altamente capacitado para identificar biomarcadores sutiles de la enfermedad, como medir el volumen de una hinchazón anatómica. Ahora, los investigadores han desarrollado un marco de aprendizaje profundo que se entrena rápidamente para analizar y diagnosticar automáticamente las resonancias magnéticas y otras imágenes médicas 3D, logrando una precisión comparable a la de los expertos médicos, pero en una fracción del tiempo.
A diferencia de otros modelos en desarrollo para el análisis de imágenes en 3D, el nuevo marco creado por investigadores de UCLA (Los Ángeles, CA, EUA) es muy adaptable a diversas modalidades de obtención de imágenes. Se ha estudiado con exploraciones de retina en 3D (tomografía de coherencia óptica) para biomarcadores de riesgo de enfermedades, videos de ultrasonidos para la evaluación de la función cardíaca, exploraciones de resonancia magnética en 3D para evaluar la gravedad de la enfermedad hepática y exploraciones de TC en 3D para la detección de neoplasias malignas en nódulos torácicos. En un artículo publicado en la revista Nature Biomedical Engineering, los investigadores destacan las amplias capacidades del sistema, lo que sugiere que podría ser valioso en muchos otros entornos clínicos. Se planean estudios adicionales para explorar más a fondo sus aplicaciones.
El modelo de la UCLA, llamado SLIViT (SLice Integration by Vision Transformer), presenta una combinación única de dos componentes de inteligencia artificial y un enfoque de aprendizaje especializado. Según los investigadores, esta combinación le permite predecir con precisión los factores de riesgo de enfermedades a partir de exploraciones médicas en múltiples modalidades volumétricas, incluso con conjuntos de datos etiquetados de tamaño moderado. La anotación automatizada de SLIViT podría beneficiar tanto a los pacientes como a los médicos al mejorar la eficiencia y la puntualidad del diagnóstico, al tiempo que avanza en la investigación médica al reducir los costos de adquisición de datos y acortar el tiempo necesario para la recopilación de datos. Además, establece un modelo fundamental que puede acelerar el desarrollo de futuros modelos predictivos.
“SLIViT supera el cuello de botella del tamaño del conjunto de datos de entrenamiento aprovechando el 'conocimiento médico' previo del dominio 2D más accesible”, dijo Berkin Durmus, estudiante de doctorado de la UCLA y coautor principal del artículo. “Mostramos que SLIViT, a pesar de ser un modelo genérico, logra consistentemente un rendimiento significativamente mejor en comparación con los modelos de vanguardia específicos del dominio. Tiene potencial de aplicabilidad clínica, igualando la precisión de la experiencia manual de los especialistas clínicos al tiempo que reduce el tiempo en un factor de 5.000. Y a diferencia de otros métodos, SLIViT es lo suficientemente flexible y robusto como para trabajar con conjuntos de datos clínicos que no siempre están en perfecto orden”.
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más