Nuevo algoritmo permite reconstrucción en tiempo real de imágenes que combinan datos ópticos y de RM para mejorar detección de cáncer de mama
Por el equipo editorial de MedImaging en español Actualizado el 03 Mar 2022 |

Los investigadores han desarrollado un nuevo enfoque de reconstrucción de imágenes que podría contribuir a una mejor detección del cáncer de mama.
El algoritmo de aprendizaje profundo desarrollado por un equipo de investigación de Dartmouth College (Hanover, NH, EUA) supera un obstáculo importante en la generación de imágenes multimodal al permitir que las imágenes se recuperen en tiempo real. El nuevo algoritmo, conocido como Z-Net, funciona con una plataforma de imágenes que combina información espectral óptica con imágenes de resonancia magnética (IRM) sin contraste para mejorar la detección del cáncer de mama. El nuevo algoritmo puede distinguir entre tumores malignos y benignos utilizando datos de imágenes de tomografía espectral de infrarrojo cercano (NIRST) guiadas por resonancia magnética de exámenes de mama de pacientes.
Hoy en día, la resonancia magnética mejorada con contraste dinámico (DCE) se reconoce como el método de detección de cáncer de mama más sensible. Sin embargo, la resonancia magnética DCE requiere la inyección intravenosa de un agente de contraste y tiene una tasa sustancial de falsos positivos. Aunque la NIRST guiada por resonancia magnética sin contraste ofrece una alternativa que no requiere inyección de contraste ni radiación ionizante, la reconstrucción de las imágenes combinadas requiere modelos complicados de propagación de la luz, así como un análisis de imágenes de resonancia magnética que requiere mucho tiempo. Los investigadores utilizaron el aprendizaje profundo para acelerar el proceso de reconstrucción de imágenes. El aprendizaje profundo es un enfoque de aprendizaje automático que crea conexiones entre piezas de información de una manera similar a como funciona el cerebro humano, lo que permite a los investigadores entrenar su algoritmo para reconocer patrones y relaciones complejas.
Después de entrenar el algoritmo, los investigadores utilizaron datos simulados para confirmar que la calidad de las imágenes reconstruidas no se degradó al eliminar el modelo de propagación de luz difusa o al no segmentar las imágenes de resonancia magnética. Luego aplicaron el nuevo algoritmo de forma prospectiva a los datos NIRST guiados por resonancia magnética recopilados de dos exámenes de imágenes mamarias, uno que condujo a un diagnóstico de cáncer confirmado por biopsia, el otro resultó en una anomalía benigna. El nuevo algoritmo generó imágenes que podían diferenciar entre los casos malignos y benignos. Los investigadores ahora están trabajando para adaptar el nuevo método de reconstrucción de imágenes para trabajar con datos 3D y planean probarlo en un ensayo clínico más grande en un futuro cercano.
“La tomografía espectral de infrarrojo cercano (NIRST, por sus siglas en inglés) y la plataforma de imágenes por resonancia magnética que desarrollamos se han mostrado prometedoras, pero el tiempo y el esfuerzo involucrados en la reconstrucción de imágenes han impedido que se traduzca en el flujo de trabajo clínico diario”, dijo Keith Paulsen, quien dirigió el equipo de investigación. “Por lo tanto, diseñamos un algoritmo de aprendizaje profundo que incorpora datos de imágenes anatómicas de MRI para guiar la formación de imágenes NIRST sin requerir un modelo complejo de propagación de la luz en el tejido”.
“Z-Net podría permitir que NIRST se convierta en un complemento eficiente y efectivo para la resonancia magnética sin contraste para la detección y el diagnóstico del cáncer de mama porque permite recuperar imágenes NIRST guiadas por resonancia magnética casi en tiempo real”, agregó Paulsen. "También se puede adaptar fácilmente para su uso con otros tipos de cáncer y enfermedades para los que se dispone de datos de imágenes multimodales".
“El algoritmo Z-Net reduce el tiempo necesario para generar una nueva imagen a unos pocos segundos”, dijo Jinchao Feng, autor principal del estudio. “Además, la red de aprendizaje automático que desarrollamos se puede entrenar con datos generados por simulaciones por computadora en lugar de necesitar imágenes de exámenes de pacientes reales, que tardan mucho tiempo en recopilarse y procesarse en información de entrenamiento”.
Enlaces relacionados:
Dartmouth College
Últimas RM noticias
- Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
- Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
- La RM biparamétrica combinada con IA mejora la detección del cáncer de próstata clínicamente significativo
- Plataforma de imágenes cerebrales impulsada por IA orienta el tratamiento del ACV
- Nuevo modelo mejora la comparación de RM tomadas en diferentes instituciones
- Nuevo escáner innovador detecta la propagación del cáncer que antes era inobservable
- Herramienta pionera analiza resonancias magnéticas para medir el envejecimiento cerebral
- Imágenes de RM mejoradas por IA hacen que el tejido mamario canceroso brille
- Modelo de IA segmenta automáticamente imágenes de resonancia magnética
- Nueva investigación respalda la RM cerebral de rutina en pacientes asintomáticas con cáncer de mama en etapa avanzada
- Dispositivo portátil realiza imágenes rápidas por MRI de accidentes cerebrovasculares junto a la cama del paciente
- La IA predice los efectos secundarios de la cirugía de tumores cerebrales a partir de resonancias magnéticas
- Estrategia de resonancia magnética primero para detección de cáncer de próstata demostrada segura
- Nuevo modelo hace que la resonancia magnética sea más precisa y confiable
- Nuevo método de escaneo muestra los efectos del tratamiento en la función pulmonar en tiempo real
- Escaneo simple podría identificar a pacientes en riesgo de problemas cardíacos graves
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más