Algoritmo detecta enfermedad de Alzheimer a partir de imágenes de RM con precisión de casi 100 %
Por el equipo editorial de MedImaging en español Actualizado el 15 Mar 2022 |

La enfermedad de Alzheimer (EA) es una de las principales causas de muerte en el mundo. Los pacientes con EA a menudo experimentan pérdida de memoria y deterioro cognitivo debido al deterioro y la muerte de las células nerviosas del cerebro. Por lo general, para diagnosticar esta enfermedad se debe realizar una evaluación psiquiátrica, se debe evaluar la memoria y las habilidades para resolver problemas, o se deben realizar varios escáneres cerebrales, incluida la resonancia magnética (RM). La detección de una etapa temprana de la EA es una tarea especialmente difícil. Ahora, un algoritmo mejorado que puede detectar la EA a partir de imágenes de RM ha logrado una precisión superior al 98 % en un conjunto de datos de prueba para detectar la enfermedad neurodegenerativa mediante la mejora de un modelo de red neuronal.
Para facilitar el proceso de diagnóstico de EA, investigadores de la Universidad Tecnológica de Kaunas (KTU, Kaunas, Lituania) desarrollaron un método de aprendizaje profundo para detectar signos tempranos de EA a partir de imágenes de RM. El modelo siguió la idea original de su estudio anterior, pero utilizó un algoritmo modificado y una red más amplia para lograr resultados más adaptables. Los últimos estudios han demostrado que las redes neuronales convolucionales (CNN) preentrenadas pueden diagnosticar con precisión enfermedades cognitivas a partir de imágenes de resonancia magnética cerebral. El estudio anterior de los investigadores de KTU se basó en la modificación de la red ResNet18, pero esta vez investigaron una variante modificada de la red DensNet201, que tiene una mejor optimización de parámetros.
Para el estudio se utilizó una colección que consta de imágenes de escáneres cerebrales de 125 sujetos del conjunto de datos de la Iniciativa de Neuroimagen de la Enfermedad de Alzheimer (ADNI). Las imágenes se analizaron en términos de enfermedad de Alzheimer, deterioro cognitivo leve y demencia. El conjunto de datos utilizado en la investigación es abierto y se actualiza constantemente con las últimas imágenes de pacientes con EA, por lo que los resultados del estudio están actualizados y son relevantes. Además del uso de una red adicional y un conjunto de datos ADNI, el estudio difiere de investigaciones anteriores al usar un mecanismo de peso diferente y emplear un mapa de activación de clase de gradiente modificado. Es un paso adelante hacia la aplicación práctica porque el modelo pronto podrá marcar las áreas afectadas del cerebro. Según los investigadores, en el futuro se podrían agregar más variables al estudio para acelerar el proceso de diagnóstico.
“Usando el conjunto de datos de ADNI en constante aumento, el algoritmo se está preparando para reconocer los síntomas de la enfermedad en varias imágenes y se vuelve menos sensible a una fuente de datos específica. No es una revolución, pero ciertamente una evolución”, dijo Rytis Maskeliūnas, investigador del Departamento de Ingeniería Multimedia de KTU. “Pronto podríamos usar esta investigación en campos médicos. Nuestro objetivo es crear un modelo que detecte los síntomas de la EA en el cerebro y marque el área afectada en la pantalla de la computadora, ayudando al profesional médico a examinar la imagen. Entonces, al incluir nuevos parámetros y conjuntos de datos más amplios, estamos mejorando este modelo. En el futuro, planeamos usar marcadores biológicos y otros métodos de escaneo cerebral para una mayor eficiencia de diagnóstico y una mejor adaptabilidad”.
Enlaces relacionados:
Universidad Tecnológica de Kaunas
Últimas RM noticias
- Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
- Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
- La RM biparamétrica combinada con IA mejora la detección del cáncer de próstata clínicamente significativo
- Plataforma de imágenes cerebrales impulsada por IA orienta el tratamiento del ACV
- Nuevo modelo mejora la comparación de RM tomadas en diferentes instituciones
- Nuevo escáner innovador detecta la propagación del cáncer que antes era inobservable
- Herramienta pionera analiza resonancias magnéticas para medir el envejecimiento cerebral
- Imágenes de RM mejoradas por IA hacen que el tejido mamario canceroso brille
- Modelo de IA segmenta automáticamente imágenes de resonancia magnética
- Nueva investigación respalda la RM cerebral de rutina en pacientes asintomáticas con cáncer de mama en etapa avanzada
- Dispositivo portátil realiza imágenes rápidas por MRI de accidentes cerebrovasculares junto a la cama del paciente
- La IA predice los efectos secundarios de la cirugía de tumores cerebrales a partir de resonancias magnéticas
- Estrategia de resonancia magnética primero para detección de cáncer de próstata demostrada segura
- Nuevo modelo hace que la resonancia magnética sea más precisa y confiable
- Nuevo método de escaneo muestra los efectos del tratamiento en la función pulmonar en tiempo real
- Escaneo simple podría identificar a pacientes en riesgo de problemas cardíacos graves
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásUltrasonido
ver canal
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... Más
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más