Aprendizaje profundo mejora la precisión en evaluaciones de calidad de la elastografía por resonancia magnética
Por el equipo editorial de MedImaging en español Actualizado el 06 Sep 2024 |

La enfermedad hepática afecta a millones de personas en todo el mundo, con muchas más en etapas no detectadas de enfermedad del hígado graso. Si no se diagnostican ni se tratan, estas afecciones pueden progresar a cirrosis, que implica cicatrices hepáticas irreversibles. Por lo general, se realiza una biopsia después de un resultado anormal en un análisis de sangre para diagnosticar y controlar el tejido hepático, pero este procedimiento conlleva riesgos y consume tiempo. Para evitar estos problemas, se han desarrollado técnicas no invasivas como la elastografía por resonancia magnética (ERM). La ERM, que combina tecnología de ultrasonido y resonancia magnética, visualiza los niveles de rigidez del hígado para indicar la cicatrización y se ha convertido en un método preferido para diagnosticar problemas hepáticos. No obstante, las exploraciones de ERM pueden fallar debido a varios factores, como el movimiento del paciente, rasgos fisiológicos específicos o problemas técnicos como la generación incorrecta de ondas. La creciente demanda de servicios de diagnóstico combinada con la escasez de personal subraya la necesidad de un método confiable y automatizado para clasificar la calidad de las imágenes de ERM para mejorar la eficiencia y minimizar los procedimientos repetidos.
Ahora, investigadores de la Escuela de Ingeniería Mecánica George W. Woodruff (Atlanta, Georgia, EUA) han utilizado con éxito el aprendizaje profundo para mejorar significativamente la precisión de las evaluaciones de calidad de imágenes de MRE. Al utilizar cinco modelos de entrenamiento de aprendizaje profundo, lograron una precisión del 92 % en imágenes retrospectivas de pacientes, que variaban en cuanto a la rigidez del hígado. Esta tecnología también logró un retorno de los datos analizados en cuestión de segundos, lo que permitió a los técnicos realizar los ajustes necesarios en el momento para evitar la necesidad de visitas adicionales del paciente debido a exploraciones iniciales de baja calidad.
Los hallazgos, detallados en el Journal of Magnetic Resonance Imaging, hacen avanzar aún más los esfuerzos para automatizar las revisiones de calidad de las imágenes por resonancia magnética mediante el aprendizaje profundo, un área relativamente inexplorada en la tecnología de imágenes médicas. Esta investigación no solo establece un punto de referencia para futuros estudios en otros órganos como el bazo o los riñones, sino que también puede extenderse a la automatización del control de calidad de la imagen en enfermedades como el cáncer de mama o la distrofia muscular, donde la rigidez del tejido es un marcador crítico de la salud y la progresión de la enfermedad. El equipo planea probar más sus modelos en los escáneres de resonancia magnética de Siemens Healthineers en el próximo año, lo que podría transformar los procesos de diagnóstico en varios campos médicos.
Enlaces relacionados:
Escuela de Ingeniería Mecánica George W. Woodruff
Últimas RM noticias
- Resonancias magnéticas identifican enfermedades cardiovasculares con diez años de antelación
- Exploración cerebral diagnostica la enfermedad de Parkinson años antes de que se vuelva intratable
- Tecnología de RM de vanguardia revolucionará el diagnóstico de problemas cardíacos comunes
- Nueva técnica de resonancia magnética revela la verdadera edad del corazón
- Herramienta de IA predice recaída de cáncer cerebral pediátrico a partir de resonancias magnéticas cerebrales
- Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
- Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
- Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
- La RM biparamétrica combinada con IA mejora la detección del cáncer de próstata clínicamente significativo
- Plataforma de imágenes cerebrales impulsada por IA orienta el tratamiento del ACV
- Nuevo modelo mejora la comparación de RM tomadas en diferentes instituciones
- Nuevo escáner innovador detecta la propagación del cáncer que antes era inobservable
- Herramienta pionera analiza resonancias magnéticas para medir el envejecimiento cerebral
- Imágenes de RM mejoradas por IA hacen que el tejido mamario canceroso brille
- Modelo de IA segmenta automáticamente imágenes de resonancia magnética
- Nueva investigación respalda la RM cerebral de rutina en pacientes asintomáticas con cáncer de mama en etapa avanzada
Canales
Radiografía
ver canal
Algoritmo de aprendizaje automático identifica riesgo cardiovascular a partir de escaneos ósea de rutina
Un nuevo estudio publicado en el Journal of Bone and Mineral Research revela que un programa automatizado de aprendizaje automático puede predecir el riesgo de eventos cardiovasculares y caídas... Más
La IA mejora la detección temprana de los cánceres de mama de intervalo
Los cánceres de mama de intervalo, que aparecen entre mamografías de rutina, son más tratables cuando se detectan a tiempo. La detección temprana puede reducir la necesidad... MásUltrasonido
ver canal
Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes
Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata
El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más
Nuevo anticuerpo radiomarcado mejora el diagnóstico y tratamiento de tumores sólidos
El receptor de interleucina-13 α-2 (IL13Rα2) es un receptor de superficie celular que se encuentra comúnmente en tumores sólidos como el glioblastoma, el melanoma y el cáncer... MásImaginología General
ver canal
Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más
Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
La terapia con radioligandos, una forma de medicina nuclear dirigida, ha cobrado relevancia recientemente por su potencial en el tratamiento de tipos específicos de tumores. Sin embargo, uno de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más