Modelo de aprendizaje profundo clasifica las radiografías de tórax con exactitud
Por el equipo editorial de MedImaging en español Actualizado el 25 Dec 2019 |

Imagen: Radiografía de tórax de un neumotórax pasado por alto por el radiólogo (I), pero identificado por el modelo de DL (D) (Fotografía cortesía de Google Health)
Un nuevo estudio afirma que la combinación de modelos de aprendizaje profundo (DL) con etiquetas de imágenes adjudicadas puede ayudar a clasificar los hallazgos clínicamente importantes en las radiografías de tórax.
Investigadores de Google Health (Mountain View, CA), Apollo Radiology International (Hyderabad, India), California Advanced Imaging (Novato, EUA) y otras instituciones, desarrollaron modelos de DL que pueden clasificar con exactitud cuatro hallazgos de rayos X de tórax clínicamente importantes: neumotórax, nódulos y masas, fracturas y opacidades del espacio aéreo. Los hallazgos objetivo se seleccionaron en consulta con radiólogos y colegas clínicos, para enfocarse en condiciones que son tanto críticas para la atención del paciente y para las que las imágenes de rayos X de tórax solas son un estudio de imagenología de primera línea importante y accesible.
Para hacerlo, utilizaron dos grandes conjuntos de datos. El primero incluyó 759.611 imágenes de la red de Hospitales Apollo (Hyderabad, India) y el segundo fue extraído de un conjunto de 112.120 imágenes disponibles al público. Se utilizaron el procesamiento del lenguaje natural y la revisión experta de un pequeño subconjunto de imágenes para proporcionar etiquetas para 657.954 imágenes de entrenamiento, con estándares de referencia definidos por cuatro radiólogos. Los resultados mostraron que para los cuatro hallazgos radiológicos, y en ambos conjuntos de datos, los modelos de DL exhibieron un desempeño a nivel de radiólogo. El estudio fue publicado el 3 de diciembre de 2019 en la revista Radiology.
“Lograr una exactitud de nivel experto en promedio es solo una parte de la historia. A pesar de que la exactitud general de los modelos de DL fue consistentemente similar a la de los radiólogos para cualquier hallazgo dado, el rendimiento de ambos varió entre los conjuntos de datos”, dijo el autor principal Shravya Shetty, MSc, líder técnico de Google Health. “Esto resalta la importancia de validar las herramientas de aprendizaje profundo en conjuntos de datos múltiples y diversos, y eventualmente en las poblaciones de pacientes y entornos clínicos en los que se pretende utilizar cualquier modelo”.
Dado que realizan millones de exámenes de diagnóstico anualmente en todo el mundo, las radiografías de tórax son una herramienta de imagenología clínica importante y accesible para la detección de muchas enfermedades. Sin embargo, su utilidad se puede ver limitada por desafíos en la interpretación, que requieren una evaluación rápida y exhaustiva de una imagen bidimensional que representa órganos complejos, tridimensionales (3D) y procesos de enfermedades. Como resultado, a menudo se pueden pasar por alto los cánceres de pulmón o neumotórax en etapa temprana (pulmones colapsados), lo que puede conducir a resultados adversos graves.
Enlace relacionado:
Google Health
Apollo Radiology International
California Advanced Imaging
Investigadores de Google Health (Mountain View, CA), Apollo Radiology International (Hyderabad, India), California Advanced Imaging (Novato, EUA) y otras instituciones, desarrollaron modelos de DL que pueden clasificar con exactitud cuatro hallazgos de rayos X de tórax clínicamente importantes: neumotórax, nódulos y masas, fracturas y opacidades del espacio aéreo. Los hallazgos objetivo se seleccionaron en consulta con radiólogos y colegas clínicos, para enfocarse en condiciones que son tanto críticas para la atención del paciente y para las que las imágenes de rayos X de tórax solas son un estudio de imagenología de primera línea importante y accesible.
Para hacerlo, utilizaron dos grandes conjuntos de datos. El primero incluyó 759.611 imágenes de la red de Hospitales Apollo (Hyderabad, India) y el segundo fue extraído de un conjunto de 112.120 imágenes disponibles al público. Se utilizaron el procesamiento del lenguaje natural y la revisión experta de un pequeño subconjunto de imágenes para proporcionar etiquetas para 657.954 imágenes de entrenamiento, con estándares de referencia definidos por cuatro radiólogos. Los resultados mostraron que para los cuatro hallazgos radiológicos, y en ambos conjuntos de datos, los modelos de DL exhibieron un desempeño a nivel de radiólogo. El estudio fue publicado el 3 de diciembre de 2019 en la revista Radiology.
“Lograr una exactitud de nivel experto en promedio es solo una parte de la historia. A pesar de que la exactitud general de los modelos de DL fue consistentemente similar a la de los radiólogos para cualquier hallazgo dado, el rendimiento de ambos varió entre los conjuntos de datos”, dijo el autor principal Shravya Shetty, MSc, líder técnico de Google Health. “Esto resalta la importancia de validar las herramientas de aprendizaje profundo en conjuntos de datos múltiples y diversos, y eventualmente en las poblaciones de pacientes y entornos clínicos en los que se pretende utilizar cualquier modelo”.
Dado que realizan millones de exámenes de diagnóstico anualmente en todo el mundo, las radiografías de tórax son una herramienta de imagenología clínica importante y accesible para la detección de muchas enfermedades. Sin embargo, su utilidad se puede ver limitada por desafíos en la interpretación, que requieren una evaluación rápida y exhaustiva de una imagen bidimensional que representa órganos complejos, tridimensionales (3D) y procesos de enfermedades. Como resultado, a menudo se pueden pasar por alto los cánceres de pulmón o neumotórax en etapa temprana (pulmones colapsados), lo que puede conducir a resultados adversos graves.
Enlace relacionado:
Google Health
Apollo Radiology International
California Advanced Imaging
Últimas Radiografía noticias
- Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres
- Estrategia híbrida con IA mejora la interpretación de mamografías
- IA predice riesgo personalizado de desarrollar cáncer de mama a cinco años
- Nueva técnica combina imágenes de rayos X y radar para un diagnóstico de cáncer más seguro
- Herramienta de IA ayuda a médicos a interpretar mejor las radiografías de tórax
- Tejido portátil para detección de rayos X permite escaneo diagnóstico en movimiento
- La IA ayuda a los radiólogos a detectar más lesiones en las mamografías
- IA detecta la enfermedad del hígado graso a partir de radiografías de tórax
- IA detecta enfermedades cardíacas ocultas en TC de tórax existentes
- Modelo de IA ultraligero rompe barreras en el diagnóstico del cáncer de pulmón
- Herramienta de IA para radiología identifica condiciones potencialmente mortales en milisegundos
- Algoritmo de aprendizaje automático identifica riesgo cardiovascular a partir de escaneos ósea de rutina
- La IA mejora la detección temprana de los cánceres de mama de intervalo
- Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
- Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
- Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Canales
RM
ver canal
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... Más
Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco
La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... MásUltrasonido
ver canal
Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil
La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más
Avance en modelo de aprendizaje profundo mejora las imágenes médicas 3D con dispositivos portátiles
La ecografía es una técnica diagnóstica vital que permite visualizar órganos y tejidos internos en tiempo real, además de guiar procedimientos como biopsias e inyecciones.... Más
Sistema de imágenes mamarias indoloro puede realizar una exploración del cáncer en un minuto
El cáncer de mama es una de las principales causas de muerte en mujeres a nivel mundial, y la detección temprana es clave para mejorar los resultados. Los métodos tradicionales, como la mamografía y el... Más
Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía
El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... MásMedicina Nuclear
ver canal
Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico
Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más
Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar
Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... MásImaginología General
ver canal
Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste
Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más
Algoritmo de IA predice con precisión la metástasis del cáncer de páncreas mediante imágenes rutinarias de TC
En el cáncer de páncreas, detectar si la enfermedad se ha extendido a otros órganos es crucial para determinar si la cirugía es adecuada. Si hay metástasis, no se recomienda... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más